De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

We komen vaak in contact met potentiële klanten die beweren dat ze geen prognosesysteem kunnen gebruiken omdat ze een "build-to-order" productiebedrijf zijn. Ik vind dit een raadselachtig perspectief, want wat deze organisaties ook bouwen, er zijn grondstoffen of tussenproducten van een lager niveau nodig. Als die invoer op een lager niveau niet beschikbaar is wanneer een bestelling voor het afgewerkte product wordt ontvangen, kan de bestelling niet worden gebouwd. Bijgevolg kan de bestelling worden geannuleerd en de bijbehorende inkomsten verloren gaan.

Ik ben het ermee eens dat in een dergelijke omgeving het voorspellen van het eindproduct niet altijd mogelijk of bijzonder nuttig is. Soms is het nuttig, maar niet voldoende. Het is in ieder geval van cruciaal belang om ervoor te zorgen dat de onderliggende grondstoffen en halffabrikaten die in het eindproduct gaan, beschikbaar zijn. De vraag ernaar kan zeker worden voorspeld.

Het doel van de organisatie zou zijn om voorraden op serviceniveau aan te houden voor deze tussenproducten die hoog maar niet onbetaalbaar zijn. Planners zullen optimale voorraadniveaus voor deze materialen moeten instellen, waarbij ze de serviceniveau-eisen afwegen tegen het beschikbare budget. Aangezien een bepaald tussenproduct kan dienen als input voor meer dan één gereed product, zou de volatiliteit van de vraag naar het tussenproduct kleiner zijn dan de volatiliteit van de vraag naar een specifiek gereed product. Daarom zouden de veiligheidsvoorraden die nodig zijn om voorraden van halffabrikaten op hoog serviceniveau aan te houden relatief mager zijn.

Drie bedrijven, alle gebruikers van SmartForecasts, dienen als interessante voorbeelden. Het eerste is een chemiebedrijf, Bedoukian Research, dat voor verschillende opdrachtgevers chemicaliën op maat maakt. Elk van deze "gereed product" is een unieke combinatie van tussenliggende chemische verbindingen. Bedoukian begint zijn vraagplanning met een prognose voor gereed product, die het productieschema en de toewijzing van essentiële productiemiddelen bepaalt. Dit vereist een behoorlijk beoordelingsvermogen, aangezien de vraag naar afgewerkte goederen dynamisch verandert.

Zodra deze afgewerkte goede prognoses zijn gemaakt, kan de behoefte aan grondstoffen worden geschat via een stuklijstdesaggregatie. Bedoukian combineert deze resultaten met veiligheidsvoorraadschattingen, gebaseerd op werkelijke bezettingsgraden en te behalen serviceniveaudoelstellingen, om de volledige, serviceniveaugestuurde prognose voor grondstoffen te genereren. Hierdoor kan Bedoukian aan zijn productie-eisen voldoen met aanzienlijk minder voorraad.

Het tweede bedrijf vervaardigt de interne componenten voor mobiele telefoons, waarbij eindproducten gespecialiseerde combinaties van deze componenten zijn. Een bestelling kan bijvoorbeeld een bepaald aantal telefoons vereisen met unieke labels op de hoes. Dit is het eindproduct voor deze bestelling. Alles wat in die volgorde komt, behalve het label, is opgebouwd uit standaardcomponenten. Nogmaals, SmartForecasts zal worden gebruikt om gestroomlijnde voorraden van de componenten op hoog serviceniveau bij te houden. Dit bedrijf dacht dat de enige manier om componentenvoorraden te beheren, was door middel van aggregaties van stuklijsten. Ze kijken nu naar de werkelijke bezettingsgraad van de componenten en stellen veel kleinere voorraden vast terwijl ze een hoge beschikbaarheid van componenten behouden.

Een derde bedrijf, NKK Switches, verkende dit onderwerp in hun recente webinar (zie Gastblogpost van CFO Bud Schultz), beschouwden hun producten als "onvoorspelbaar". U kunt er hieronder meer over lezen, maar over het algemeen was NKK Switches in staat om componenten en zinvolle aggregaties van productfamilies te voorspellen. Door prognoses versus werkelijke waarden gedurende meerdere maanden bij te houden, kon NKK de nauwkeurigheid van zijn prognoses aan zijn Aziatische fabrieksleveranciers aantonen en hen overtuigen om over te stappen van een "build-to-order"-model naar "build-to-forecast". Deze verandering heeft geresulteerd in een drastische verkorting van de doorlooptijden, in veel gevallen zelfs gehalveerd, waardoor de klanttevredenheid en het algehele verkooppercentage zijn toegenomen.

Waar het hier op neerkomt, is dat er een volkomen levensvatbare – ik zou zeggen essentiële – methode voor vraagvoorspelling voor op bestelling gemaakte bedrijven bestaat, waarbij hoge serviceniveaus worden vastgesteld voor essentiële inputbronnen. Als je meer wilt weten, stuur me dan een berichtje, op nelsonh op smartcorp dot com.

Nelson Hartunian, PhD, was medeoprichter van Smart Software, was voorheen President en houdt er momenteel toezicht op als voorzitter van de raad van bestuur. Hij heeft op verschillende momenten leiding gegeven aan softwareontwikkeling, verkoop en klantenservice.

Laat een reactie achter

gerelateerde berichten

Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie

Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie

In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken.

Dagelijkse vraagscenario's

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Constructief spelen met Digital Twins

Constructief spelen met Digital Twins

Degenen onder u die actuele onderwerpen volgen, zullen bekend zijn met de term ‘digitale tweeling’. Degenen die het te druk hebben gehad met hun werk, willen misschien verder lezen en bijpraten. Hoewel er verschillende definities van een digitale tweeling bestaan, is er één die goed werkt: een digitale tweeling is een dynamische virtuele kopie van een fysiek bezit, proces, systeem of omgeving die er hetzelfde uitziet en zich hetzelfde gedraagt als zijn tegenhanger in de echte wereld. Een digitale tweeling neemt gegevens op en repliceert processen, zodat u mogelijke prestatieresultaten en problemen kunt voorspellen die het echte product kan ondergaan.

recente berichten

  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Causes of Overstocking and Practical Solutions
    Managing inventory effectively is critical for maintaining a healthy balance sheet and ensuring that resources are optimally allocated. Here is an in-depth exploration of the main causes of overstocking, their implications, and possible solutions. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]
  • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
    De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
  • Automatische prognoses beheersen voor het kopiëren van tijdreeksgegevensBeheersing van automatische prognoses voor tijdreeksgegevens
    In deze blog onderzoeken we de automatische prognose voor vraagprojecties in tijdreeksen. Er zijn meerdere methoden om de toekomstige vraag naar een artikel te voorspellen, en dit wordt complex als het om duizenden artikelen gaat, die elk een andere voorspellingstechniek vereisen vanwege hun unieke vraagpatronen. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]