Wat te doen als een statistische prognose geen steek houdt

Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de voorspelling er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten.

Deze blog zal een leek helpen begrijpen wat de slimme statistische modellen zijn en hoe ze automatisch worden gekozen. Er wordt ingegaan op hoe die keuze soms mislukt, hoe u kunt weten of dat zo is en wat u kunt doen om ervoor te zorgen dat de prognoses altijd gerechtvaardigd kunnen worden. Het is belangrijk om te weten wat u kunt verwachten en hoe u de uitzonderingen kunt opvangen, zodat u kunt vertrouwen op uw prognosesysteem.

 

Hoe methoden automatisch worden gekozen

De criteria om automatisch één statistische methode uit een set te kiezen, zijn gebaseerd op welke methode het dichtst bij het correct voorspellen van de achtergehouden geschiedenis kwam. De eerdere geschiedenis wordt aan elke methode doorgegeven en het resultaat wordt vergeleken met de werkelijke waarden om de methode te vinden die er het dichtst bij in de buurt kwam. Die automatisch gekozen methode krijgt dan alle geschiedenis om de voorspelling te produceren. Bekijk deze blog voor meer informatie over de modelselectie https://smartcorp.com/uncategorized/statistical-forecasting-how-automatic-method-selection-works/

Voor de meeste tijdreeksen kan dit proces trends, seizoensgebondenheid en gemiddeld volume nauwkeurig vastleggen. Maar soms komt een gekozen methode wiskundig het dichtst in de buurt van het voorspellen van de achtergehouden geschiedenis, maar projecteert deze niet op een logische manier. Dat betekent dat de door het systeem geselecteerde methode niet de beste is en voor sommigen "moeilijk te voorspellen"

 

Moeilijk te voorspellen items

Moeilijk te voorspellen items kunnen grote, onvoorspelbare pieken in de vraag hebben, of meestal geen vraag maar willekeurige onregelmatige pieken, of ongebruikelijke recente activiteit. Ruis in de gegevens dwaalt soms willekeurig omhoog of omlaag, en de geautomatiseerde best-pick-methode kan een op hol geslagen trend of een nulpunt voorspellen. Het zal het slechter doen dan gezond verstand en in een klein percentage van een redelijk gevarieerde groep items. U moet deze gevallen dus identificeren en reageren door de prognose te negeren of de invoer van de prognose te wijzigen.

 

Hoe de uitzonderingen te vinden

De beste werkwijze is om de voorspelde items te filteren of te sorteren om de items te identificeren waarvan de som van de prognose voor het volgende jaar aanzienlijk afwijkt van de overeenkomstige geschiedenis van vorig jaar. De prognosesom kan veel lager zijn dan de historie of andersom. Gebruik de meegeleverde statistieken om deze items te identificeren; vervolgens kunt u ervoor kiezen om overschrijvingen toe te passen op de prognose of de prognose-instellingen te wijzigen.

 

Hoe de uitzonderingen op te lossen

Wanneer de voorspelling vreemd lijkt, zal een middelingsmethode, zoals Single Exponential Smoothing of zelfs een eenvoudig gemiddelde met behulp van Freestyle, vaak een redelijkere voorspelling opleveren. Als de trend mogelijk geldig is, kunt u alleen seizoensmethoden verwijderen om een onjuist seizoensresultaat te voorkomen. Of doe het tegenovergestelde en gebruik alleen seizoensmethoden als seizoensgebondenheid wordt verwacht maar niet was geprojecteerd in de standaardprognose. U kunt de wat-als-functies gebruiken om een onbeperkt aantal prognoses te maken, te evalueren en te vergelijken en de instellingen verder te verfijnen totdat u vertrouwd bent met de prognose.

Het opschonen van de geschiedenis, met of zonder wijziging van de automatische methodeselectie, is ook effectief bij het produceren van redelijke voorspellingen. U kunt prognoseparameters insluiten om de hoeveelheid geschiedenis die wordt gebruikt om die items te voorspellen of het aantal perioden dat aan het algoritme is doorgegeven, te verminderen, zodat eerdere, verouderde geschiedenis niet langer in aanmerking wordt genomen. U kunt pieken of dalen in de vraaggeschiedenis bewerken die bekende afwijkingen zijn, zodat ze de uitkomst niet beïnvloeden. U kunt ook samenwerken met het Smart-team om automatische detectie en verwijdering van uitschieters te implementeren, zodat gegevens voordat ze worden voorspeld al zijn opgeschoond van deze afwijkingen.

Als de vraag echt intermitterend is, wordt het bijna onmogelijk om "nauwkeurig" per periode te voorspellen. Als een level-loading-gemiddelde niet acceptabel is, kan het effectief zijn om het artikel af te handelen door een voorraadbeleid in te stellen met een doorlooptijdprognose. U kunt er ook voor kiezen om 'hetzelfde als vorig jaar'-modellen te gebruiken die, hoewel ze niet gevoelig zijn voor nauwkeurigheid, algemeen worden geaccepteerd door het bedrijf gezien de alternatieve prognoses.

Ten slotte, als het item zo recent is geïntroduceerd dat de algoritmen niet genoeg input hebben om nauwkeurig te voorspellen, is een eenvoudige gemiddelde of handmatige voorspelling wellicht het beste. U kunt nieuwe items identificeren door te filteren op het aantal historische perioden.

 

Handmatige selectie van methoden

Zodra u rijen hebt geïdentificeerd waar de prognose niet logisch is voor het menselijk oog, kunt u een kleinere subset van alle methoden kiezen om de prognoserun toe te laten en te vergelijken met de geschiedenis. Met Smart kunt u een beperkte set methoden gebruiken voor slechts één prognoserun of de beperkte set insluiten om te gebruiken voor alle prognoseruns in de toekomst. Verschillende methoden zullen de geschiedenis op verschillende manieren in de toekomst projecteren. Als u een idee heeft van hoe elk werkt, kunt u kiezen welke u wilt toestaan.

 

Vertrouw op uw prognosetool

Hoe meer u Slimme periode-over-periode gebruikt om uw beslissingen over hoe te voorspellen en welke historische gegevens u in overweging moet nemen, vast te leggen, hoe minder vaak u uitzonderingen zult tegenkomen, zoals beschreven in deze blog. Het invoeren van prognoseparameters is een beheersbare taak wanneer u begint met kritieke items of items met een hoge impact. Zelfs als u geen handmatige beslissingen over prognosemethoden insluit, wordt de prognose elke periode opnieuw uitgevoerd met nieuwe gegevens. Dus een item met een oneven resultaat vandaag kan in de loop van de tijd gemakkelijk voorspelbaar worden.

 

 

Service Level Driven Planning voor Service Parts-bedrijven in de Dynamics 365-ruimte

Service-Level-Driven Service Parts Planning voor Microsoft Dynamics BC of F&SC is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen.

 

De wiskunde om dit planningsniveau te bepalen, bestaat eenvoudigweg niet in de D365-functionaliteit. Het vereist wiskunde en AI die duizenden keren door berekeningen gaat voor elk onderdeel en onderdeelcentrum (locaties). Wiskunde en AI zoals deze zijn uniek voor Smart. Lees verder om meer te begrijpen. 

 

Stap 1. Zorg ervoor dat alle belanghebbenden het eens zijn over de maatstaven die er toe doen. 

Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten het eens zijn over de definities en welke statistieken het belangrijkst zijn voor de organisatie. Serviceniveaus beschrijf het percentage van de tijd dat u volledig aan het vereiste gebruik kunt voldoen zonder een voorraad op te lopen. Vul tarieven specificeer het percentage van het aangevraagde verbruik dat direct uit voorraad wordt gevuld. (Bekijk deze les van 4 minuten voor meer informatie over de verschillen tussen serviceniveaus en opvullingspercentage hier.) Beschikbaarheid geeft het percentage actieve reserveonderdelen weer met een voorhanden voorraad van ten minste één eenheid. Kosten vasthouden zijn de kosten op jaarbasis van het aanhouden van voorraden, rekening houdend met veroudering, belastingen, rente, opslag en andere uitgaven. Tekort kosten zijn de kosten van het opraken van de voorraad, inclusief uitvaltijd van voertuigen/apparatuur, versnellingen, verloren verkopen en meer. Bestellen kosten zijn de kosten die gepaard gaan met het plaatsen en ontvangen van aanvullingsorders.

 

Stap 2. Benchmark historische en voorspelde huidige serviceniveauprestaties.

Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten een gemeenschappelijk inzicht hebben in de voorspelde toekomstige serviceniveaus, opvullingspercentages en kosten en de implicaties daarvan voor uw activiteiten met service-onderdelen. Het is van cruciaal belang om zowel historisch te meten Kritieke Prestatie Indicatoren (KPI's) en hun voorspellende equivalenten, Belangrijkste prestatievoorspellingen (KPP's). Door gebruik te maken van moderne software kunt u prestaties uit het verleden benchmarken en gebruikmaken van probabilistische prognosemethoden om toekomstige prestaties te simuleren. Vrijwel elke Demand Planning-oplossing stopt hier. Smart gaat verder stress testen uw huidige voorraadbeleid tegen alle plausibele toekomstige vraagscenario's. Het zijn deze duizenden berekeningen die onze KPP's bouwen. De nauwkeurigheid hiervan verbetert het vermogen van de D365 om de kosten van het aanhouden van te veel in evenwicht te brengen met de kosten van het niet genoeg hebben. U weet van tevoren hoe het huidige en voorgestelde voorraadbeleid waarschijnlijk zal presteren.

 

Stap 3. Spreek gerichte serviceniveaus af voor elk reserveonderdeel en onderneem proactieve corrigerende maatregelen wanneer wordt voorspeld dat doelen niet worden gehaald. 

Onderdelenplanners, leidinggevenden in de toeleveringsketen en de mechanische/onderhoudsteams moeten het eens worden over de gewenste serviceniveaudoelen met een volledig begrip van de wisselwerking tussen voorraadrisico en voorraadkosten. Een oproep hier is dat onze D365-klanten bijna altijd versteld staan van het verschil in voorraadniveau tussen de beschikbaarheid van 100% en 99.5%. Met de logica voor bijna 10.000 scenario's dat er bijna nooit een half procent uitvalt. U realiseert een volledig voorraadbeleid met veel lagere kosten. Je vindt de onderdelen die ondervoorraad zijn en corrigeert deze. Het evenwichtspunt is vaak een 7-12% verlaging van de voorraadkosten. 

Dit benutten van wat-als-scenario's in onze software voor onderdelenplanning kunnen management en inkopers eenvoudig alternatief voorraadbeleid vergelijken en bepalen welke het best aansluiten bij de zakelijke doelstellingen. Voor sommige onderdelen is een kleine voorraad in orde. Voor anderen hebben we die beschikbaarheid van 99.5%-onderdelen nodig. Zodra deze limieten zijn overeengekomen, gebruiken we de kracht van D365 om de voorraad te optimaliseren met behulp van D365 core ERP zoals het hoort. De planning wordt automatisch geüpload om Dynamics in te schakelen met gewijzigde bestelpunten, veiligheidsvoorraadniveaus en/of min/max-parameters. Dit ondersteunt een enkel Enterprise-centerpunt en mensen gebruiken niet meerdere systemen voor hun dagelijkse onderdelenbeheer en inkoop.

 

Stap 4. Maak het zo en houd het zo. 

Geef het planningsteam de kennis en tools die het nodig heeft om ervoor te zorgen dat u een overeengekomen balans vindt tussen serviceniveaus en kosten. Dit is cruciaal en belangrijk. Het is ook belangrijk om Dynamics F&SC of BC te gebruiken om uw ERP-transacties uit te voeren. Deze twee Dynamics ERP's hebben het hoogste niveau van nieuwe ERP-groei ter wereld. Het is logisch om ze te gebruiken zoals ze bedoeld zijn. Het vullen van de witte ruimte voor de wiskundige en AI-berekeningen voor Onderhoud en Onderdelenbeheer is ook logisch. Dit vereist een meer complexe en gerichte oplossing om te helpen. Smart Software Inventory Optimization voor EAM en Dynamics ERP's biedt het antwoord.    

Onthoud: Herkalibratie van uw voorraadbeleid voor serviceonderdelen is preventief onderhoud tegen zowel stockouts als overtollige voorraad. Het helpt kosten, maakt kapitaal vrij voor ander gebruik en ondersteunt best practices voor uw team. 

 

Breid Microsoft 365 F&SC en AX uit met Smart IP&O

Registreer u hier om een opname te zien van het Microsoft Dynamics Communities-webinar over Smart IP&O:

https://smartcorp.com/inventory-planning-with-microsoft-365-fsc-and-ax/

 

 

 

 

Software voor vraagplanning en voorraadoptimalisatie implementeren met de juiste gegevens

Gegevensverificatie en -validatie zijn essentieel voor het succes van de implementatie van software die statistische analyse van gegevens uitvoert, zoals Smart IP&O. Dit artikel beschrijft het probleem en dient als een praktische gids om het werk goed te doen, vooral voor de gebruiker van de nieuwe applicatie.

Hoe minder ervaring uw organisatie heeft met het valideren van historische transacties of artikelstamkenmerken, hoe waarschijnlijker het is dat er problemen of fouten zijn opgetreden bij het invoeren van gegevens in het ERP die tot nu toe onopgemerkt zijn gebleven. De 'garbage in, garbage out'-regel betekent dat u prioriteit moet geven aan deze stap van het software-onboardingproces, anders loopt u het risico vertraging op te lopen en mogelijk geen ROI te genereren.

De beste persoon om te bevestigen dat gegevens in uw ERP correct zijn ingevoerd, is uiteindelijk de persoon die de business kent en bijvoorbeeld kan beweren “dit onderdeel behoort niet tot die productgroep”. Dat is meestal dezelfde persoon die Smart opent en gebruikt. Maar ook een databasebeheerder of IT-support kan een sleutelrol spelen door te kunnen zeggen: “Dit onderdeel is afgelopen december door Jane Smith aan die productgroep toegewezen.” Ervoor zorgen dat gegevens correct zijn, is misschien geen vast onderdeel van uw dagelijkse werk, maar kan worden opgesplitst in beheersbare kleine taken waarvoor een goede projectmanager tijd en middelen zal uittrekken.

De softwareleverancier voor vraagplanning die de gegevens ontvangt, speelt ook een rol. Ze zullen bevestigen dat de onbewerkte gegevens zonder problemen zijn opgenomen. De leverancier kan ook afwijkingen in de onbewerkte gegevensbestanden identificeren die wijzen op de noodzaak van validatie. Maar vertrouwen op de softwareleverancier om u gerust te stellen dat de gegevens er goed uitzien, is niet genoeg. U wilt na de livegang niet ontdekken dat u de output niet kunt vertrouwen omdat sommige gegevens "niet kloppen".

Elke stap in de gegevensstroom heeft verificatie en validatie nodig.  Verificatie betekent dat de gegevens in de ene stap nog steeds hetzelfde zijn nadat ze naar de volgende stap zijn gegaan. Validatie betekent dat de gegevens correct en bruikbaar zijn voor analyse

De meest voorkomende gegevensstroom ziet er als volgt uit:

Software voor vraagplanning en voorraadoptimalisatie implementeren met de juiste dataset

Minder vaak wordt de eerste stap tussen ERP-stamgegevens en de gekoppelde bestanden soms overgeslagen, waarbij bestanden niet als interface worden gebruikt. In plaats daarvan is een API die is gebouwd door IT of de leverancier van software voor inventarisoptimalisatie verantwoordelijk voor het rechtstreeks schrijven van gegevens vanuit de ERP naar de gespiegelde database in de cloud. De leverancier zou samenwerken met IT om te bevestigen dat de API werkt zoals verwacht. Maar zelfs in dat geval kan de eerste validatiestap nog steeds worden uitgevoerd. Na opname van de gegevens kan de leverancier de gespiegelde gegevens beschikbaar maken in bestanden voor de DBA/IT-verificatie en bedrijfsvalidatie.

De bevestiging dat de gespiegelde data in de cloud de stroom naar de applicatie voltooit, is de verantwoordelijkheid van de leverancier van software-as-a-service. SaaS-leveranciers testen voortdurend of de software correct werkt tussen de front-end-applicatie die hun abonnees zien en de back-end-gegevens in de clouddatabase. Als de abonnees nog steeds denken dat de gegevens niet kloppen in de applicatie, zelfs nadat ze de interfacing-bestanden hebben gevalideerd voordat ze live gaan, is dat een probleem dat ze moeten bespreken met de klantenondersteuning van de leverancier.

Hoe de interfacing-bestanden ook worden verkregen, het grootste deel van de verificatie en validatie komt toe aan de projectmanager en zijn team. Ze moeten een test van de interfacing-bestanden uitvoeren om te bevestigen:

  1. Ze matchen de gegevens in het ERP. En dat alle en alleen de ERP-gegevens die nodig waren om te extraheren voor gebruik in de applicatie, werden geëxtraheerd.
  2. Niets "springt eruit" voor het bedrijf als onjuist voor elk van de soorten informatie in de gegevens
  3. Ze zijn geformatteerd zoals verwacht.

 

DBA/IT Verificatie Taken

  1. Test het uittreksel:

IT's verificatiestap kan worden gedaan met verschillende tools, waarbij bestanden worden vergeleken of bestanden worden terug geïmporteerd naar de database als tijdelijke tabellen en ze worden samengevoegd met de originele gegevens om een match te bevestigen. IT kan afhankelijk zijn van een query om de gevraagde gegevens naar een bestand te halen, maar dat bestand kan niet overeenkomen. Het bestaan van scheidingstekens of regelretouren binnen de gegevenswaarden kan ertoe leiden dat een bestand afwijkt van de oorspronkelijke databasetabel. Het is omdat het bestand sterk afhankelijk is van scheidingstekens en regelterugloop om velden en records te identificeren, terwijl de tabel niet afhankelijk is van die tekens om de structuur te definiëren.

  1. Geen slechte karakters:

Vrije gegevensinvoervelden in het ERP, zoals productbeschrijvingen, kunnen soms zelf regeleinden, tabs, komma's en/of dubbele aanhalingstekens bevatten die de structuur van het uitvoerbestand kunnen beïnvloeden. Regelretouren mogen niet worden toegestaan in waarden die naar een bestand worden geëxtraheerd. Tekens die gelijk zijn aan het scheidingsteken moeten tijdens het extraheren worden verwijderd of er moet een ander scheidingsteken worden gebruikt.

Tip: als komma's het bestandsscheidingsteken zijn, kunnen getallen groter dan 999 niet worden geëxtraheerd met een komma. Gebruik "1000" in plaats van "1000".

  1. Bevestig de filters:

De andere manier waarop query-extracten onverwachte resultaten kunnen opleveren, is als voorwaarden voor de query onjuist zijn ingevoerd. De eenvoudigste manier om verkeerde "where-clausules" te voorkomen, is door ze niet te gebruiken. Extraheer alle gegevens en laat de leverancier enkele records eruit filteren volgens de regels die door het bedrijf zijn verstrekt. Als dit leidt tot uittrekbestanden die zo groot zijn dat er te veel rekentijd wordt besteed aan de gegevensuitwisseling, moet het DBA/IT-team met het bedrijf overleggen om precies te bevestigen welke filters op de gegevens kunnen worden toegepast om te voorkomen dat records worden uitgewisseld die geen betekenis hebben voor de gegevensuitwisseling. sollicitatie.

Tip: Houd er rekening mee dat actief/inactief of informatie over de levenscyclus van items niet mag worden gebruikt om records uit te filteren. Deze informatie moet naar de applicatie worden gestuurd, zodat deze weet wanneer een item inactief wordt.

  1. Wees consistent:

Het extractieproces moet elke keer dat het wordt uitgevoerd, bestanden met een consistent formaat produceren. Bestandsnamen, veldnamen en positie, scheidingsteken en Excel-bladnaam als Excel wordt gebruikt, numerieke formaten en datumnotaties, en het gebruik van aanhalingstekens rond waarden mogen nooit verschillen van de ene uitvoering van het extract van dag tot dag. Voor elke uitvoering van het uittreksel moet een hands-off rapport of opgeslagen procedure worden opgesteld en gebruikt.

 

Zakelijke validatie achtergrond

Hieronder vindt u een uitsplitsing van elke validatiestap in overwegingen, met name in het geval dat de leverancier een sjabloonformaat heeft verstrekt voor de gekoppelde bestanden, waarbij elk type informatie in een eigen bestand wordt verstrekt. Bestanden die vanuit uw ERP naar Smart worden verzonden, zijn geformatteerd zodat ze eenvoudig vanuit het ERP kunnen worden geëxporteerd. Dat soort formaat maakt de vergelijking terug naar het ERP een relatief eenvoudige taak voor IT, maar het kan moeilijker zijn voor het bedrijf om te interpreteren. De beste praktijk is om de ERP-gegevens te manipuleren, hetzij door draaitabellen of iets dergelijks in een spreadsheet te gebruiken. IT kan helpen door geherformatteerde gegevensbestanden aan te bieden voor beoordeling door het bedrijf.

Als u zich wilt verdiepen in de interfacing-bestanden, moet u ze begrijpen. De leverancier zal een nauwkeurig sjabloon leveren, maar over het algemeen bestaan de interfacebestanden uit drie typen: catalogusgegevens, artikelkenmerken en transactiegegevens.

  • Catalogusgegevens bevatten identifiers en hun attributen. Identificaties zijn typisch voor producten, locaties (dit kunnen fabrieken of magazijnen zijn), uw klanten en uw leveranciers.
  • Artikelkenmerken bevatten informatie over producten op locaties die nodig zijn voor analyse van de product- en locatiecombinatie. Zoals:
    • Huidig bevoorradingsbeleid in de vorm van een Min en Max, Bestelpunt, of Herzieningsperiode en Bestelling tot waarde, of Veiligheidsvoorraad
    • Toewijzing primaire leverancier en nominale doorlooptijd en kosten per eenheid van die leverancier
    • Vereisten voor de bestelhoeveelheid, zoals de minimale bestelhoeveelheid, de grootte van de productieserie of veelvouden van bestellingen
    • Actieve/inactieve status van de combinatie product/locatie of vlaggen die de status ervan in de levenscyclus aangeven, zoals pre-obsolete
    • Attributen voor groepering of filtering, zoals toegewezen inkoper/planner of productcategorie
    • Actuele voorraadinformatie zoals bij de hand, op bestelling en in transithoeveelheden.
  • Transactiegegevens bevatten verwijzingen naar identifiers samen met datums en hoeveelheden. Zoals de verkochte hoeveelheid in een verkooporder van een product, op een locatie, voor een klant, op een datum. Of hoeveelheid geplaatst op inkooporder van een product, naar een locatie, van een leverancier, op een datum. Of hoeveelheid gebruikt in een werkorder van een componentproduct op een locatie op een datum.

 

Catalogusgegevens valideren

Als u eerst de catalogusgegevens bekijkt, hebt u mogelijk catalogusbestanden die lijken op deze voorbeelden:

Software voor vraagplanning en voorraadoptimalisatie implementeren 111

Locatie-ID Beschrijving Regio Bron Locatie  enz…
Locatie1 Eerste locatie noorden    
Locatie2 Tweede locatie zuiden Locatie1  
Locatie3 Derde locatie zuiden Locatie1  
…enz…        

 

Klantidentificatie Beschrijving Verkoper Verzenden vanaf locatie  enz…
Klant1 Eerste klant Jane Locatie1  
Klant2 Tweede klant Jane Locatie3  
Klant3 Derde klant Jo Locatie2  
…enz…        

 

Identificatie van de leverancier Beschrijving Toestand Typische doorlooptijddagen  enz…
Leverancier1 Eerste leverancier Actief 18  
Leverancier2 Tweede leverancier Actief 60  
Leverancier3 Derde leverancier Actief 5  
…enz…        

 

1: Controleer op een redelijk aantal catalogusrecords

Open elk bestand met catalogusgegevens in een spreadsheetprogramma zoals Google Spreadsheets of MS Excel. Beantwoord deze vragen:

  1. Is het recordaantal in de marge? Als u ongeveer 50.000 producten heeft, zouden er niet slechts 10.000 rijen in het bestand moeten staan.
  2. Als het een kort bestand is, bijvoorbeeld het locatiebestand, kunt u precies bevestigen dat alle verwachte identifiers erin staan.
  3. Filter op elke attribuutwaarde en bevestig nogmaals dat het aantal records met die attribuutwaarde zinvol is.

2: Controleer de juistheid van waarden in elk attribuutveld

Iemand die weet wat de producten zijn en wat de groepen betekenen, moet de tijd nemen om te bevestigen dat het echt goed is, voor alle attributen van alle catalogusgegevens.

Dus als uw productbestand de attributen bevat zoals in het bovenstaande voorbeeld, zou u filteren op Status van Actief en controleren of alle resulterende producten daadwerkelijk actief zijn. Filter vervolgens op Status van Inactief en controleer of alle resulterende producten daadwerkelijk inactief zijn. Filter vervolgens op de eerste groepswaarde en bevestig dat alle resulterende producten in die groep zitten. Herhaal dit voor Groep2 en Groep3, enz. Herhaal dit voor elk attribuut in elk bestand.

Het kan helpen om deze validatie uit te voeren met een vergelijking met een reeds bestaand en vertrouwd rapport. Als u om welke reden dan ook een andere spreadsheet heeft die producten per groep weergeeft, kunt u de interfacing-bestanden daarmee vergelijken. Mogelijk moet u vertrouwd raken met de functie VERT.ZOEKEN die helpt bij het vergelijken van spreadsheets.

Artikelkenmerkgegevens valideren

1: Controleer op een redelijk aantal itemrecords

De bevestiging van de itemattribuutgegevens is vergelijkbaar met de catalogusgegevens. Bevestig dat het aantal product/locatie-combinaties logisch is in totaal en voor elk van de unieke itemkenmerken, één voor één. Dit is een voorbeeldbestand met artikelgegevens:

Software voor vraagplanning en voorraadoptimalisatie implementeren 22

2: Zoek en verklaar rare getallen in het itembestand

Er zijn meestal veel numerieke waarden in de itemattributen, dus "rare" cijfers verdienen een beoordeling. Om gegevens voor een numeriek attribuut in een willekeurig bestand te valideren, zoekt u waar het nummer is:

  • Ontbreekt volledig
  • Gelijk aan nul
  • Minder dan nul
  • Meer dan de meeste anderen, of minder dan de meeste anderen (sorteer op die kolom)
  • Helemaal geen nummer, terwijl het zou moeten zijn

Een speciale overweging van bestanden die geen catalogusbestanden zijn, is dat ze mogelijk niet de beschrijvingen van de producten en locaties tonen, alleen hun identifiers, die voor u betekenisloos kunnen zijn. U kunt kolommen invoegen voor de product- en locatiebeschrijvingen die u gewend bent te zien en deze in de spreadsheet invullen om u te helpen bij uw werk. De VLOOKUP-functie werkt hier ook voor. Of u nu wel of niet een ander rapport hebt om het Items-bestand mee te vergelijken, u hebt de catalogusbestanden voor Producten en Locatie met zowel de identifier als de beschrijving voor elke rij.

3: Controle ter plaatse

Als u gefrustreerd bent dat er te veel attribuutwaarden zijn om binnen een redelijke tijd handmatig te controleren, is steekproefsgewijze controle een oplossing. Het kan worden gedaan op een manier die waarschijnlijk problemen oppikt. Haal voor elk attribuut een lijst op met de unieke waarden in elke kolom. U kunt een kolom naar een nieuw blad kopiëren en vervolgens de functie Duplicaten verwijderen gebruiken om de lijst met mogelijke waarden te bekijken. Met het:

  1. Bevestig dat er geen attribuutwaarden aanwezig zijn die dat niet zouden moeten zijn.
  2. Het kan moeilijker zijn om te onthouden welke attribuutwaarden ontbreken die er zouden moeten zijn, dus het kan helpen om naar een andere bron te kijken om u eraan te herinneren. Als bijvoorbeeld Groep1 tot en met Groep12 aanwezig zijn, kunt u een andere bron controleren om te onthouden of dit alle mogelijke groepen zijn. Zelfs als het niet vereist is voor de interfacing-bestanden voor de applicatie, kan het voor IT gemakkelijk zijn om een lijst te extraheren van alle mogelijke groepen die in uw ERP staan, die u kunt gebruiken voor de validatie. Als u extra of ontbrekende waarden vindt die u niet verwacht, breng dan een voorbeeld van elk naar IT om te onderzoeken.
  3. Sorteer alfabetisch en scan naar beneden om te zien of twee waarden vergelijkbaar zijn, maar enigszins verschillen, misschien alleen in interpunctie, wat zou kunnen betekenen dat in één record de attribuutgegevens onjuist zijn ingevoerd.

Controleer voor elk type item, misschien één van elke productgroep en/of locatie, of alle attributen in elk bestand correct zijn of op zijn minst een sanity check doorstaan. Hoe meer u een breed scala aan items kunt controleren, hoe kleiner de kans dat u problemen zult hebben nadat ze live zijn gegaan.

 

Transactiegegevens valideren

Transactiebestanden kunnen allemaal een vergelijkbare indeling hebben:

Software voor vraagplanning en voorraadoptimalisatie implementeren 333

 

1: Vind rare getallen in elk transactiebestand en leg ze uit

Deze moeten worden gecontroleerd op "rare" getallen in het veld Hoeveelheid. Dan kunt u doorgaan naar:

  1. Filter op datums buiten het verwachte bereik of ontbrekende verwachte datums.
  2. Zoek waar transactie-ID's en regelnummers ontbreken. Dat zouden ze niet moeten zijn.
  3. Als er meer dan één record is voor een bepaalde combinatie van transactie-ID en transactieregelnummer, is dat dan een vergissing? Anders gezegd, moeten dubbele records hun hoeveelheden bij elkaar optellen of is dat dubbeltelling?

2: Sanity check opgetelde hoeveelheden

Voer een gezond verstand uit door te filteren op een bepaald product waarmee u bekend bent, en filter op een herkenbare periode zoals vorige maand of vorig jaar, en som de hoeveelheden op. Is dat totale bedrag wat u voor dat product in dat tijdsbestek verwachtte? Als u informatie heeft over het totale gebruik buiten een locatie, kunt u de gegevens op die manier splitsen om de hoeveelheden op te tellen en te vergelijken met wat u verwacht. Draaitabellen zijn handig voor verificatie van transactiegegevens. Met hen kunt u de gegevens bekijken zoals:

Product Jaar Hoeveelheid Totaal
Prod1 2022 9,034
Prod1 2021 8,837
enz    

 

Het jaarlijkse totaal van de producten kan eenvoudig te controleren zijn als u de producten goed kent. Of u kunt VERT.ZOEKEN gebruiken om attributen toe te voegen, zoals een productgroep, en daarop draaien om een hoger niveau te zien dat vertrouwder is:

Productgroep Jaar Hoeveelheid Totaal
Groep 1 2022 22,091
Groep2 2021 17,494
enz    

 

3: Sanity check telling van records

Het kan helpen om een aantal transacties weer te geven in plaats van een som van de hoeveelheden, vooral voor inkoopordergegevens. Zoals:

Product Jaar Aantal PO's
Prod1 2022 4
Prod1 2021 1
enz    

 

En/of dezelfde samenvatting op een hoger niveau, zoals:

Productgroep Jaar Aantal PO's
Groep 1 2022 609
Groep2 2021 40
enz    

 

4: Controle ter plaatse

Steekproefsgewijs controleren van de juistheid van een enkele transactie, voor elk type artikel en elk type transactie, voltooit de due diligence. Besteed speciale aandacht aan welke datum aan de transactie is gekoppeld en of deze geschikt is voor de analyse. Datums kunnen een aanmaakdatum zijn, zoals de datum waarop een klant een bestelling bij u heeft geplaatst, of een beloftedatum, zoals de datum waarop u verwachtte te leveren op de bestelling van de klant op het moment dat u deze aanmaakte, of een uitvoeringsdatum, wanneer u daadwerkelijk heeft geleverd op de bestelling. Soms wordt een beloftedatum gewijzigd dagen nadat de bestelling is gemaakt als deze niet kan worden gehaald. Zorg ervoor dat de gebruiksdatum de werkelijke vraag van de klant naar het product zo goed mogelijk weergeeft.

Wat te doen met slechte gegevens 

Als er weinig of eenmalig foutieve invoer is, kunt u de ERP-records met de hand bewerken zodra ze worden gevonden, waardoor uw cataloguskenmerken worden opgeschoond, zelfs nadat de applicatie live is gegaan. Maar als grote hoeveelheden attributen of transactiehoeveelheden niet kloppen, kan dit een intern project ertoe aanzetten om gegevens opnieuw correct in te voeren en mogelijk om het proces te wijzigen of te documenteren dat moet worden gevolgd wanneer nieuwe records in uw ERP worden ingevoerd.

Er moet voor worden gezorgd dat de implementatie van de SaaS-applicatie niet te lang op zich laat wachten tijdens het wachten op schone attributen. Verdeel het werk in brokken en gebruik de applicatie om eerst de opgeschoonde gegevens te analyseren, zodat het gegevensopschoningsproject parallel loopt met het halen van waarde uit de nieuwe applicatie.

 

 

Statistische prognoses: hoe automatische methodeselectie werkt in Smart IP&O

Smart IP&O biedt geautomatiseerde statistische prognoses die de juiste prognosemethode selecteren die de gegevens het beste voorspelt. Het doet dit voor elke tijdreeks in de dataset. Deze blog zal leken helpen begrijpen hoe de voorspellingsmethoden automatisch worden gekozen.

Smart stelt vele methoden beschikbaar, waaronder enkele en dubbele exponentiële afvlakking, lineair en eenvoudig voortschrijdend gemiddelde, en Winters-modellen. Elk model is ontworpen om een ander soort patroon vast te leggen. De criteria om automatisch één statistische methode uit een reeks keuzes te kiezen, zijn gebaseerd op welke methode het dichtst bij het correct voorspellen van de achtergehouden geschiedenis kwam.

Eerdere vraaggeschiedenis wordt aan elke methode doorgegeven en het resultaat wordt vergeleken met de werkelijke waarden om de methode te vinden die er in het algemeen het dichtst bij kwam. Die "winnende" automatisch gekozen methode krijgt dan alle geschiedenis voor dat item om de prognose te produceren.

De algehele aard van het vraagpatroon voor het item wordt vastgelegd door verschillende delen van de geschiedenis vast te houden, zodat een incidentele uitbijter de keuze van de methode niet onnodig beïnvloedt. U kunt het visualiseren met behulp van het onderstaande diagram, waarin elke rij een 3-periodevoorspelling in de uitgehouden geschiedenis vertegenwoordigt, gebaseerd op verschillende hoeveelheden van de rode eerdere geschiedenis. De varianties van elke pass worden samen gemiddeld om de algemene rangschikking van de methode ten opzichte van alle andere methoden te bepalen.

App voor automatische prognoses en statistische prognoses

Voor de meeste tijdreeksen kan dit proces nauwkeurig trends, seizoensinvloeden en gemiddeld volume vastleggen. Maar soms komt een gekozen methode wiskundig het dichtst in de buurt van het voorspellen van de achtergehouden geschiedenis, maar projecteert deze niet op een logische manier.

Gebruikers kunnen dit corrigeren door de uitzonderingsrapporten en filterfuncties van het systeem te gebruiken om items te identificeren die een beoordeling verdienen. Vervolgens kunnen ze de automatische prognosemethoden configureren waarmee ze voor dat item in aanmerking willen komen.

 

 

Hoeveel tijd zou het kosten om statistische prognoses te berekenen?
De belangrijkste factoren die van invloed zijn op de snelheid van uw prognose-engine 

Hoe lang moet het duren voordat een vraagprognose wordt berekend met behulp van statistische methoden? Deze vraag wordt vaak gesteld door klanten en prospects. Het antwoord hangt er echt van af. Voorspellingsresultaten voor een enkel item kunnen in een oogwenk worden berekend, in slechts enkele honderdsten van een seconde, maar soms kan het zelfs vijf seconden duren. Om de verschillen te begrijpen, is het belangrijk om te begrijpen dat er meer bij komt kijken dan alleen de rekenkundige berekeningen zelf door te spitten. Hier zijn zes factoren die de snelheid van uw prognose-engine beïnvloeden.

1) Prognosemethode.  Traditionele tijdreeks-extrapolatieve technieken (zoals exponentiële afvlakking en voortschrijdend-gemiddeldemethoden) zijn, mits slim gecodeerd, razendsnel. De automatische prognose-engine Smart Forecast, die gebruikmaakt van deze technieken en onze software voor vraagplanning en voorraadoptimalisatie aandrijft, kan bijvoorbeeld in 1 seconde statistische prognoses voor 1000 artikelen genereren! Extrapolatieve methoden produceren een verwachte voorspelling en een samenvattende maatstaf voor de voorspellingsonzekerheid. Complexere modellen in ons platform die probabilistische vraagscenario's genereren, duren echter veel langer bij dezelfde computerbronnen. Dit komt deels omdat ze een veel groter outputvolume creëren, meestal duizenden plausibele toekomstige vraagreeksen. Meer tijd, ja, maar geen tijdverspilling, aangezien deze resultaten veel vollediger zijn en de basis vormen voor downstream-optimalisatie van voorraadbeheerparameters.

2) Computerbronnen.  Hoe meer bronnen u naar de berekening gooit, hoe sneller het zal zijn. Middelen kosten echter geld en het is misschien niet economisch om in deze middelen te investeren. Om bijvoorbeeld bepaalde soorten op machine learning gebaseerde prognoses te laten werken, moet het systeem multithread-berekeningen over meerdere servers uitvoeren om snel resultaten te leveren. Zorg er dus voor dat u de veronderstelde rekenresources en bijbehorende kosten begrijpt. Onze berekeningen vinden plaats in de Amazon Web Services-cloud, dus het is mogelijk om desgewenst voor een groot deel van de parallelle berekeningen te betalen.

3) Aantal tijdreeksen.  Moet u slechts een paar honderd artikelen op één locatie of vele duizenden artikelen op tientallen locaties voorspellen? Hoe groter het aantal combinaties van SKU x Locatie, hoe langer de benodigde tijd. Het is echter mogelijk om de tijd om vraagprognoses te krijgen te verkorten door een betere vraagclassificatie. Het is bijvoorbeeld niet belangrijk om elke combinatie van SKU x Locatie te voorspellen. Moderne software voor vraagplanning kan de gegevens eerst subsetten op basis van volume-/frequentieclassificaties voordat de prognose-engine wordt uitgevoerd. We hebben situaties waargenomen waarin meer dan een miljoen combinaties van SKU x Locatie bestonden, maar waar slechts tien procent vraag naar had in de voorgaande twaalf maanden.

4) Historisch emmeren. Maakt u prognoses met behulp van dagelijkse, wekelijkse of maandelijkse tijdsintervallen? Hoe gedetailleerder de bucketing, hoe meer tijd het kost om statistische prognoses te berekenen. Veel bedrijven zullen zich afvragen: "Waarom zou iemand dagelijks prognoses willen maken?" State-of-the-art software voor vraagvoorspelling kan echter gebruikmaken van dagelijkse gegevens om gelijktijdige dag-van-week- en week-van-maandpatronen te detecteren die anders zouden worden verdoezeld met traditionele maandelijkse vraagbuckets. En de snelheid van zaken blijft toenemen, wat de concurrentiekracht van het traditionele maandelijkse planningstempo bedreigt.

5) Hoeveelheid geschiedenis. Beperkt u het model door alleen de meest recente vraaghistorie in te voeren, of voert u alle beschikbare historie in de vraagvoorspellingssoftware? Hoe meer historie u het model voedt, hoe meer gegevens er moeten worden geanalyseerd en hoe langer het gaat duren.

6) Aanvullende analytische verwerking.  Tot nu toe hebben we ons voorgesteld om de vraaggeschiedenis van items in te voeren en prognoses te krijgen. Maar het proces kan ook aanvullende analytische stappen omvatten die de resultaten kunnen verbeteren. Voorbeelden zijn onder meer:

a) Uitbijterdetectie en -verwijdering om de vervorming te minimaliseren die wordt veroorzaakt door eenmalige gebeurtenissen zoals stormschade.

b) Machine learning dat beslist hoeveel geschiedenis moet worden gebruikt voor elk item door verandering van regime te detecteren.

c) Causale modellering die identificeert hoe veranderingen in vraagbepalende factoren (zoals prijs, rentevoet, klantensentiment, enz.) de toekomstige vraag beïnvloeden.

d) Melding van uitzonderingen die data-analyse gebruikt om ongebruikelijke situaties te identificeren die nadere beoordeling door het management verdienen.

 

De rest van het verhaal. Het is ook van cruciaal belang om te begrijpen dat de tijd om een antwoord te krijgen meer inhoudt dan de snelheid van het voorspellen van berekeningen per se. Gegevens moeten in het geheugen worden geladen voordat de berekening kan beginnen. Zodra de prognoses zijn berekend, moet uw browser de resultaten laden zodat ze op het scherm kunnen worden weergegeven zodat u ermee kunt werken. Als u een product opnieuw voorspelt, kunt u ervoor kiezen om de resultaten op te slaan. Als u werkt met producthiërarchieën (het samenvoegen van artikelprognoses tot productfamilies, families tot productlijnen, enz.), zal de nieuwe prognose de hiërarchie beïnvloeden en moet alles op elkaar worden afgestemd. Dit kost allemaal tijd.

Snel genoeg voor jou? Wanneer u software evalueert om te zien of aan uw behoefte aan snelheid zal worden voldaan, kan dit allemaal worden getest als onderdeel van een proof of concept of proef aangeboden door leveranciers van software voor vraagplanning. Test het uit, en zorg ervoor dat de berekenen, laden en opslaan tijden zijn acceptabel gezien de hoeveelheid gegevens en prognosemethoden die u wilt gebruiken om uw proces te ondersteunen.