De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Er is een oud grapje: "Er zijn twee soorten mensen - zij die geloven dat er twee soorten mensen zijn, en zij die dat niet doen." We kunnen die grap aanpassen: "Er zijn twee soorten mensen - zij die weten dat er drie soorten supply chain-analyse zijn, en zij die deze blog nog niet hebben gelezen."

De drie typen supply chain-analyse zijn 'beschrijvend', 'voorspellend' en 'voorschrijvend'. Elk speelt een andere rol bij het helpen bij het beheren van uw voorraad. Met moderne supply chain-software kunt u alle drie benutten.

Beschrijvende analyses

Beschrijvende analyses zijn het spul van dashboards. Ze vertellen je "wat er nu gebeurt." In deze categorie zijn samenvattingscijfers opgenomen zoals dollars die momenteel in voorraad zijn geïnvesteerd, het huidige niveau van klantenservice en opvullingspercentage, en gemiddelde doorlooptijden van leveranciers. Deze statistieken zijn handig om uw activiteiten bij te houden, vooral wanneer u wijzigingen daarin van maand tot maand bijhoudt. U zult elke dag op hen vertrouwen. Ze vereisen nauwkeurige bedrijfsdatabases, statistisch verwerkt.

Voorspellende analyse

Voorspellende analyses manifesteren zich meestal als prognoses van de vraag, vaak opgesplitst per product en locatie en soms ook per klant. Deze statistieken geven vroegtijdige waarschuwingen, zodat u productie, personeel en inkoop van grondstoffen kunt versnellen om aan de vraag te voldoen. Ze bieden ook voorspellingen van het effect van wijzigingen in het bedrijfsbeleid, bijvoorbeeld: wat gebeurt er als we onze bestelhoeveelheid voor product X verhogen van 20 naar 25 eenheden? U kunt periodiek, misschien wekelijks of maandelijks, vertrouwen op Predictive Analytics wanneer u opkijkt van wat er nu gebeurt om te zien wat er daarna zal gebeuren. Predictive Analytics gebruikt beschrijvende analyse als basis, maar voegt meer mogelijkheden toe. Predictive Analytics voor vraagprognoses vereist geavanceerde statistische verwerking om kenmerken van de productvraag zoals trend, seizoensinvloeden en verandering van regime. Predictive Analytics voor voorraadbeheer gebruikt prognoses van de vraag als invoer in modellen van de werking van voorraadbeleid, die op hun beurt schattingen geven van belangrijke prestatiestatistieken zoals serviceniveaus, opvullingspercentages, en werkingskosten.

Prescriptieve analyses

Prescriptieve analyses gaan niet over wat er nu gebeurt of wat er daarna gaat gebeuren, maar over wat u vervolgens zou moeten doen, dwz ze bevelen beslissingen aan die gericht zijn op het maximaliseren van de prestaties van het inventarisatiesysteem. U kunt op Prescriptive Analytics vertrouwen om uw gehele voorraadbeleid zo goed mogelijk vorm te geven. Prescriptive Analytics gebruikt Predictive Analytics als basis en voegt vervolgens optimalisatiemogelijkheden toe. Prescriptive Analytics-software kan bijvoorbeeld automatisch de beste keuzes maken voor toekomstige waarden van min's en max's voor duizenden inventarisitems. Hier kan 'beste' de waarde van Min en Max voor elk artikel betekenen die de bedrijfskosten minimaliseert (de som van kosten voor vasthouden, bestellen en tekorten) terwijl een 90%-minimum voor het opvullingspercentage van artikelen wordt gehandhaafd.

Voorbeeld

Onderstaande figuur laat zien hoe supply chain analytics de voorraadbeheerder kan helpen. De kolommen tonen drie voorspelde Key Performance Indicators (KPI's): serviceniveau, voorraadinvestering en bedrijfskosten (holdingkosten + bestelkosten + tekortkosten).

 Afbeelding 1: de drie soorten analyses die worden gebruikt om planningsscenario's te evalueren

De rijen tonen vier alternatieve voorraadbeleidslijnen, uitgedrukt als scenario's. Het “Live” scenario rapporteert over de waarden van de KPI's op 1 juli 2018. Het “99% All” scenario wijzigt het huidige beleid door het serviceniveau van alle artikelen te verhogen naar 99%. Het scenario "75 verdieping/99 plafond" verhoogt serviceniveaus die te laag zijn tot 75% en verlaagt zeer hoge (dwz dure) serviceniveaus tot 95%. Het scenario "Optimalisatie" schrijft artikelspecifieke serviceniveaus voor die de totale bedrijfskosten minimaliseren.

Het scenario “Live 01-07-2018” is een voorbeeld van beschrijvende analyse. Het toont de huidige basislijnprestaties. De software stelt de gebruiker vervolgens in staat wijzigingen in het voorraadbeleid uit te proberen door nieuwe "Wat als"-scenario's te creëren die vervolgens kunnen worden omgezet in benoemde scenario's voor verdere overweging. De volgende twee scenario's zijn voorbeelden van Predictive Analytics. Ze beoordelen allebei de gevolgen van hun aanbevolen beleid voor voorraadbeheer, dwz de aanbevolen waarden van Min en Max voor alle artikelen. Het scenario 'Optimalisatie' is een voorbeeld van Prescriptive Analytics omdat het een beste compromisbeleid aanbeveelt.

Overweeg hoe de drie alternatieve scenario's zich verhouden tot het "Live" basisscenario. Het scenario "99% All" verhoogt de beschikbaarheidsstatistieken van artikelen, waardoor het serviceniveau stijgt van 88% naar 99%. Hierdoor neemt de totale inventarisinvestering echter toe van $3 miljoen tot ongeveer $4 miljoen. Het scenario '75 vloer/99 plafond' daarentegen verhoogt zowel het serviceniveau als vermindert het contante geld dat vastzit in de voorraad met ongeveer $300.000. Ten slotte bereikt het scenario "Optimalisatie" een 80%-serviceniveau, een verlaging ten opzichte van de huidige 88%, maar het verlaagt de voorraadwaarde met meer dan $2 miljoen en verlaagt de bedrijfskosten met meer dan $400.000 per jaar. Van hieruit konden managers verdere opties uitproberen, zoals het teruggeven van een deel van de $2 miljoen besparingen om een hoger gemiddeld serviceniveau te bereiken.

Overzicht

Moderne softwarepakketten voor voorraadplanning en voorraadoptimalisatie zouden drie soorten supply chain-analyses moeten bieden: beschrijvend, voorspellend en prescriptief. Dankzij hun combinatie kunnen voorraadbeheerders hun activiteiten volgen (Beschrijvend), voorspellen waar hun activiteiten in de toekomst zullen zijn (Predictive) en hun voorraadbeleid optimaliseren om te anticiperen op toekomstige omstandigheden (Prescriptief).

 

 

Laat een reactie achter

gerelateerde berichten

Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

Dagelijkse vraagscenario's

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

De kosten van spreadsheetplanning

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

recente berichten

  • Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatieOnzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie
    In this blog, we will discuss today's fast-paced and unpredictable market and the constant challenges businesses face in managing their inventory and service levels efficiently. The main subject of this discussion, rooted in the concept of "Probabilistic Inventory Optimization," focuses on how modern technology can be leveraged to achieve optimal service and inventory targets amidst uncertainty. This approach not only addresses traditional inventory management issues but also offers a strategic edge in navigating the complexities of demand fluctuations and supply chain disruptions. […]
  • Dagelijkse vraagscenario's Smart 2Dagelijkse vraagscenario's
    In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën. […]
  • De kosten als u niets doet met uw voorraadplanningssystemenDe kosten van spreadsheetplanning
    Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën. […]
  • Leren van voorraadmodellen Software AILeren van voorraadmodellen
    In deze videoblog wordt een cruciaal aspect van voorraadbeheer in de schijnwerpers gezet: de analyse en interpretatie van voorraadgegevens. De focus ligt specifiek op een dataset van een openbaar vervoersbedrijf met details over reserveonderdelen voor bussen. […]
  • De methoden voor het voorspellen van softwareDe methoden voor voorspelling
    Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all-proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
    • Vraag naar reserveonderdelen voorspellen-een-ander-perspectief-voor-planning-service-onderdelenDe voorspelling is belangrijk, maar misschien niet zoals u denkt
      Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja. […]
    • Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraadWaarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien. […]
    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]