Een controle op prognoseautomatisering met de aandachtsindex

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Een nieuwe maatstaf die we de "Attentie-index" noemen, helpt voorspellers situaties te identificeren waarin "gegevens die zich slecht gedragen" automatische statistische voorspellingen kunnen verstoren (zie hiernaast). Het identificeert snel die items die waarschijnlijk de meeste kans hebben om prognoses te negeren, wat een efficiëntere manier biedt om zakelijke ervaring en andere menselijke intelligentie aan het werk te zetten om de nauwkeurigheid van prognoses te maximaliseren. Hoe werkt het?

Klassiek voorspellingsmethoden, zoals de verschillende smaken van exponentiële afvlakking en voortschrijdende gemiddelden, dringen aan op een sprong in het diepe. Ze vereisen dat we erop vertrouwen dat de huidige omstandigheden in de toekomst blijven bestaan. Als de huidige omstandigheden aanhouden, is het verstandig om deze extrapolatieve methoden te gebruiken - methoden die het huidige niveau, de trend, de seizoensgebondenheid en "ruis" van een tijdreeks kwantificeren en projecteren in de toekomst.

Maar als ze niet aanhouden, kunnen extrapolatieve methoden ons in de problemen brengen. Wat omhoog ging, kan ineens omlaag gaan. Wat vroeger rond het ene niveau was gecentreerd, kan plotseling naar een ander niveau springen. Of er kan iets heel vreemds gebeuren dat volledig uit het patroon is. In deze verrassende omstandigheden verslechtert de nauwkeurigheid van de prognoses, gaan voorraadberekeningen verkeerd en ontstaat er algemene onvrede.

Een manier om met dit probleem om te gaan, is te vertrouwen op complexere voorspellingsmodellen die rekening houden met externe factoren die de variabele bepalen die wordt voorspeld. Verkooppromoties proberen bijvoorbeeld kooppatronen te verstoren en in een positieve richting te bewegen, dus het opnemen van promotieactiviteiten in het prognoseproces kan de verkoopprognoses verbeteren. Soms kunnen macro-economische indicatoren, zoals het starten van huizen of inflatiepercentages, worden gebruikt om de nauwkeurigheid van prognoses te verbeteren. Maar complexere modellen vereisen meer gegevens en meer expertise, en ze zijn misschien niet bruikbaar voor sommige problemen, zoals het beheer van onderdelen of subsystemen, in plaats van afgewerkte goederen.

Als iemand vastloopt met behulp van eenvoudige extrapolatieve methoden, is het handig om een manier te hebben om items te markeren die moeilijk te voorspellen zijn. Dit is de Aandachtsindex. Zoals de naam al doet vermoeden, vereisen items die moeten worden voorspeld met een hoge Attention Index een speciale behandeling - op zijn minst een beoordeling en meestal een soort van prognoseaanpassing.

 

 

De Aandachtsindex detecteert drie soorten problemen:

Een uitbijter in de vraaggeschiedenis van een artikel.
Een abrupte verandering in het niveau van een item.
Een abrupte verandering in de trend van een artikel.
Met behulp van software zoals SmartForecasts™ kan de voorspeller omgaan met een uitbijter door deze te vervangen door een meer typische waarde.

Een abrupte verandering in niveau of trend kan worden verholpen door alle gegevens van vóór de "breuk" in het vraagpatroon uit de prognoseberekeningen weg te laten, ervan uitgaande dat het item is overgeschakeld naar een nieuw regime dat de oudere gegevens irrelevant maakt.

Hoewel geen enkele index perfect is, slaagt de Aandachtsindex er goed in om de aandacht te vestigen op de meest problematische vraaggeschiedenissen. Dit wordt aangetoond in de twee onderstaande figuren, die zijn gemaakt met gegevens van de M3 Competition, bekend in de prognosewereld. Figuur 1 toont de 20 items (van de 3.003 van de wedstrijd) met de hoogste Attention Index-scores; al deze hebben groteske uitschieters en breuken. Figuur 2 toont de 20 items met de laagste Attention Index-scores; de meeste (maar niet alle) items met lage scores hebben relatief goedaardige patronen.

Als u duizenden items te voorspellen heeft, zal de nieuwe Aandachtsindex zeer nuttig zijn om uw aandacht te richten op die items die het meest waarschijnlijk problematisch zijn.

Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Correlation vs Causation: Is This Relevant to Your Job?

Correlation vs Causation: Is This Relevant to Your Job?

Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct.

Soorten prognoseproblemen die we helpen oplossen

Soorten prognoseproblemen die we helpen oplossen

Het genereren van nauwkeurige statistische prognoses is geen gemakkelijke taak. Planners moeten historische gegevens continu up-to-date houden, een database met voorspellingsmodellen bouwen en beheren, weten welke voorspellingsmethoden ze moeten gebruiken, bijhouden of voorspellingsonderdrukkingen worden overschreven en rapporteren over de nauwkeurigheid van de voorspelling. Hier zijn voorbeelden van prognoseproblemen die SmartForecasts kan oplossen, samen met de soorten bedrijfsgegevens die representatief zijn voor elk.

Drie manieren om de nauwkeurigheid van prognoses te schatten

Drie manieren om de nauwkeurigheid van prognoses te schatten

Nauwkeurigheid van prognoses is een belangrijke maatstaf om de kwaliteit van uw vraagplanningsproces te beoordelen. Als u eenmaal prognoses heeft, zijn er verschillende manieren om hun nauwkeurigheid samen te vatten, meestal aangeduid met obscure drie- of vierletterige acroniemen zoals MAPE, RMSE en MAE.

recente berichten

  • professional technician engineer planning spare parts in industrial manufacturing factory,Prepare your spare parts planning for unexpected shocks
    In today's unpredictable business climate, we do have to worry about supply chain disruptions, long lead times, rising interest rates, and volatile demand. With all these challenges, it's never been more vital for organizations to accurately forecast parts usage, stocking levels, and to optimize replenishment policies such as reorder points, safety stocks, and order quantities. In this blog, we'll explore how companies can leverage innovative solutions like inventory optimization and parts forecasting software that utilize machine learning algorithms, probabilistic forecasting, and analytics to stay ahead of the curve and protect their supply chains from unexpected shocks. […]
  • Uncover data facts and improve inventory performanceUncover data facts and improve inventory performance
    The best inventory planning processes rely on statistical analysis to uncover relevant facts about the data. When you have the facts and add your business knowledge, you can make more informed stocking decisions that will generate significant returns. You'll also set proper expectations with internal and external stakeholders, ensuring there are fewer unwelcome surprises. […]
  • Electricity problems. Repairman is working indoors with Software for spare partsElectric Utilities’ Problems with Spare Parts
    Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
  • Correlation vs Causation Relevant to your demand planning businessCorrelation vs Causation: Is This Relevant to Your Job?
    Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct. […]
  • Downtown Miami skyline panorama and with software guided lights on at duskSmart Software Customer, Arizona Public Service to Present at USMA 2023
    Smart Software CEO and APS Inventory & Logistics Manager to present USMA 2023 Session on APS supply chain transformation project and the role of inventory optimization technology in their new process. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • professional technician engineer planning spare parts in industrial manufacturing factory,Prepare your spare parts planning for unexpected shocks
      In today's unpredictable business climate, we do have to worry about supply chain disruptions, long lead times, rising interest rates, and volatile demand. With all these challenges, it's never been more vital for organizations to accurately forecast parts usage, stocking levels, and to optimize replenishment policies such as reorder points, safety stocks, and order quantities. In this blog, we'll explore how companies can leverage innovative solutions like inventory optimization and parts forecasting software that utilize machine learning algorithms, probabilistic forecasting, and analytics to stay ahead of the curve and protect their supply chains from unexpected shocks. […]
    • Electricity problems. Repairman is working indoors with Software for spare partsElectric Utilities’ Problems with Spare Parts
      Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
    • Werknemer onderhoud industriële machine robotachtige reserveonderdelen voorspellenHoe u reserveonderdelen kunt voorspellen die weinig worden gebruikt
      Wat doet u wanneer u een periodiek gevraagd artikel, zoals een reserveonderdeel, voorspelt met een gemiddelde vraag van minder dan één eenheid per maand? Meestal is de vraag nul, maar het onderdeel is zakelijk significant; het kan niet worden genegeerd en moet worden voorspeld om er zeker van te zijn dat u voldoende voorraad heeft. […]
    • Reserveonderdelen, vervangende onderdelen, draaibare onderdelen en aftermarket-onderdelenReserveonderdelen, vervangende onderdelen, draaibare onderdelen en aftermarket-onderdelen
      Degenen die nieuw zijn in het onderdelenplanningsspel worden vaak in de war gebracht door de vele variaties in de namen van onderdelen. Deze blog wijst op onderscheidingen die wel of niet van operationele betekenis zijn voor iemand die een vloot reserveonderdelen beheert en hoe die verschillen van invloed zijn op de voorraadplanning. […]