El Blog de Smart

Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Una nueva métrica que llamamos "Índice de atención" ayudará a los pronosticadores a identificar situaciones en las que "los datos se comportan mal" pueden distorsionar los pronósticos estadísticos automáticos (ver el poema adyacente). Identifica rápidamente aquellos elementos que probablemente requieran anulaciones de pronósticos, lo que proporciona una forma más eficiente de poner a trabajar la experiencia comercial y otra inteligencia humana para maximizar la precisión de los pronósticos. ¿Como funciona?

Clásico métodos de pronóstico, como los diversos sabores de suavizado exponencial y promedios móviles, insisten en un acto de fe. Requieren que confiemos en que las condiciones presentes persistirán en el futuro. Si las condiciones actuales persisten, entonces es sensato utilizar estos métodos extrapolativos, métodos que cuantifican el nivel actual, la tendencia, la estacionalidad y el “ruido” de una serie temporal y los proyectan hacia el futuro.

Pero si no persisten, los métodos de extrapolación pueden causarnos problemas. Lo que había estado subiendo podría estar bajando de repente. Lo que solía estar centrado en un nivel puede saltar repentinamente a otro. O podría suceder algo realmente extraño que está completamente fuera de patrón. En estas circunstancias sorprendentes, la precisión de los pronósticos se deteriora, los cálculos de inventario fallan y se produce un descontento general.

Una forma de hacer frente a este problema es confiar en modelos de pronóstico más complejos que tengan en cuenta los factores externos que impulsan la variable que se pronostica. Por ejemplo, las promociones de ventas intentan interrumpir los patrones de compra y moverlos en una dirección positiva, por lo que incluir la actividad de promoción en el proceso de pronóstico puede mejorar el pronóstico de ventas. A veces, los indicadores macroeconómicos, como la construcción de viviendas o las tasas de inflación, se pueden utilizar para mejorar la precisión de los pronósticos. Pero los modelos más complejos requieren más datos y más experiencia, y es posible que no sean útiles para algunos problemas, como la gestión de piezas o subsistemas, en lugar de productos terminados.

Si uno está atascado usando métodos extrapolativos simples, es útil tener una forma de marcar elementos que serán difíciles de pronosticar. Este es el índice de atención. Como sugiere el nombre, los elementos que se van a pronosticar con un índice de atención alto requieren un manejo especial, al menos una revisión y, por lo general, algún tipo de ajuste de pronóstico.

 

 

El Índice de Atención detecta tres tipos de problemas:

Un valor atípico en el historial de demanda de un artículo.
Un cambio abrupto en el nivel de un elemento.
Un cambio abrupto en la tendencia de un artículo.
Usando software como SmartForecasts™, el pronosticador puede lidiar con un valor atípico reemplazándolo con un valor más típico.

Un cambio abrupto en el nivel o la tendencia se puede abordar omitiendo, de los cálculos de pronóstico, todos los datos anteriores a la "ruptura" en el patrón de demanda, suponiendo que el artículo haya cambiado a un nuevo régimen que hace que los datos anteriores sean irrelevantes.

Si bien ningún índice es perfecto, el Índice de atención hace un buen trabajo al centrar la atención en los historiales de demanda más problemáticos. Esto se demuestra en las dos figuras a continuación, que se produjeron con datos de la competencia M3, muy conocida en el mundo de los pronósticos. La Figura 1 muestra los 20 ítems (de los 3.003 del concurso) con las puntuaciones más altas en el Índice de Atención; todos estos tienen grotescos valores atípicos y rupturas. La Figura 2 muestra los 20 ítems con las puntuaciones más bajas del Índice de Atención; la mayoría (pero no todos) de los ítems con puntajes bajos tienen patrones relativamente benignos.

Si tiene miles de elementos para pronosticar, el nuevo índice de atención será muy útil para centrar su atención en aquellos elementos que probablemente sean problemáticos.

Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselaer y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.

Deja un comentario

Artículos Relacionados

Qué hacer cuando un pronóstico estadístico no tiene sentido

Qué hacer cuando un pronóstico estadístico no tiene sentido

A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico.

Mensajes recientes

  • Quince preguntas que revelan cómo se calculan los pronósticos en su empresaQuince preguntas que revelan cómo se calculan los pronósticos en su empresa
    En una publicación reciente de LinkedIn, detallé cuatro preguntas que, una vez respondidas, revelarán cómo se utilizan los pronósticos en su negocio. En este artículo, hemos enumerado preguntas que puede hacer que revelarán cómo se crean los pronósticos. […]
  • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
    A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
  • Grupo de negocios de estilo en trajes de negocios clásicos con binoculares y telescopios reproducen diferentes métodos de pronósticoCómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico
    Este blog explica cómo funciona cada modelo de pronóstico utilizando gráficos de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro. […]
  • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
  • Qué hacer cuando un pronóstico estadístico no tiene sentidoQué hacer cuando un pronóstico estadístico no tiene sentido
    A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
      A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
    • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
      La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]