De top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen

We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden).

Hun maandelijkse proces bestond uit het bijwerken van een nieuwe maand met actuals naar het 'puntenoverzicht voor opnieuw bestellen'. Een ingebedde formule herberekende het Reorder Point (ROP) en order-up-to (Max) niveau. Het werkte als volgt:

  • ROP = LT Vraag + Veiligheidsvoorraad
  • LT-vraag = gemiddelde dagelijkse vraag x doorlooptijddagen (constant verondersteld om het simpel te houden)
  • Veiligheidsvoorraad voor onderdelen met een lange doorlooptijd = Standaardafwijking x 2,0
  • Veiligheidsvoorraad voor onderdelen met een korte doorlooptijd = Standaardafwijking x 1,2
  • Max = ROP + door de leverancier voorgeschreven minimale bestelhoeveelheid

Historische gemiddelden en standaarddeviaties gebruikten 52 weken voortschrijdende geschiedenis (dwz de nieuwste week verving de oudste week in elke periode). De standaarddeviatie van de vraag werd berekend met behulp van de functie "stdevp" in Excel.

Elke maand werd een nieuwe ROP opnieuw berekend. Zowel de gemiddelde vraag als de standaarddeviatie werden gewijzigd door de vraag van de nieuwe week, die op zijn beurt de ROP bijwerkte.

De standaard ROP is altijd gebaseerd op de bovenstaande logica. Planners zouden echter onder bepaalde voorwaarden wijzigingen aanbrengen:

1. Planners zouden de minimumprijs voor goedkope onderdelen verhogen om het risico op een on-time delivery hit (OTD) op een goedkoop onderdeel te verkleinen.

2. Het Excel-blad identificeerde elk onderdeel met een nieuw berekende ROP die ± 20% verschilde van de huidige ROP.

3. Planners beoordeelden onderdelen die de uitzonderingsdrempel overschreden, stelden wijzigingen voor en lieten een manager goedkeuren.

4. Planners beoordeelden items met OTD-hits en verhoogden de ROP op basis van hun intuïtie. Planners bleven die onderdelen gedurende verschillende perioden monitoren en verlaagden de ROP wanneer ze dachten dat het veilig was.

5. Nadat de ROP en de maximale hoeveelheid waren bepaald, werd het bestand met herziene resultaten naar IT gestuurd, die het in hun ERP uploadde.

6. Het ERP-systeem beheerde vervolgens de dagelijkse bevoorrading en het orderbeheer.

Objectief gezien was dit misschien een bovengemiddelde benadering van voorraadbeheer. Sommige bedrijven zijn zich bijvoorbeeld niet bewust van het verband tussen vraagvariabiliteit en veiligheidsvoorraadvereisten en vertrouwen uitsluitend op methodes of intuïtie. Er zijn echter problemen met hun aanpak:

1. Handmatige gegevensupdates
De spreadsheets moesten handmatig worden bijgewerkt. Om opnieuw te berekenen waren meerdere stappen nodig, elk met hun eigen afhankelijkheid. Eerst moest er een datadump worden uitgevoerd vanuit het ERP-systeem. Ten tweede zou een planner de spreadsheet moeten openen en bekijken om er zeker van te zijn dat de gegevens correct zijn geïmporteerd. Ten derde moesten ze de uitvoer beoordelen om er zeker van te zijn dat deze berekend was zoals verwacht. Ten vierde waren er handmatige stappen nodig om de resultaten terug te sturen naar het ERP-systeem.

2. Eén maat voor alle veiligheidsvoorraad
Of in dit geval "one of two sizes fit all". De keuze om 2x en 1,2x standaarddeviatie te gebruiken voor respectievelijk artikelen met een lange en korte doorlooptijd komt overeen met serviceniveaus van 97.7% en 88.4%. Dit is een groot probleem, aangezien het logisch is dat niet elk onderdeel in elke groep hetzelfde serviceniveau vereist. Sommige onderdelen hebben meer voorraadpijn dan andere en vice versa. Serviceniveaus moeten daarom dienovereenkomstig worden gespecificeerd en in overeenstemming zijn met het belang van het item. We ontdekten dat ze OTD-hits ondervonden op ongeveer 20% van hun kritieke reserveonderdelen, waardoor handmatige aanpassingen van de ROP nodig waren. De hoofdoorzaak was dat ze voor alle items met een korte doorlooptijd een serviceniveau van 88,4% hadden gepland. Dus het beste wat ze hadden kunnen krijgen, was om 12% van die tijd in voorraad te hebben, zelfs als ze 'volgens plan' waren. Het zou beter zijn geweest om serviceniveaudoelen te plannen op basis van het belang van het onderdeel.

3. Veiligheidsvoorraad is onnauwkeurig.  De artikelen die voor dit bedrijf worden gepland, zijn reserveonderdelen ter ondersteuning van diagnostische apparatuur. De vraag naar de meeste van deze onderdelen is zeer intermitterend en sporadisch. De keuze om een gemiddelde te gebruiken om de vraag naar doorlooptijd te berekenen, was dus niet onredelijk als je de noodzaak accepteert om variabiliteit in doorlooptijden te negeren. Echter, het beroep op a Normale verdeling het bepalen van de veiligheidsvoorraad was een grote fout die resulteerde in onnauwkeurige veiligheidsvoorraden. Het bedrijf verklaarde dat het serviceniveau voor artikelen met een lange doorlooptijd in het 90%-bereik lag in vergelijking met hun doel van 97,7%, en dat ze het verschil goedmaakten met spoed. De bereikte serviceniveaus voor items met een kortere doorlooptijd bedroegen ongeveer 80%, ondanks het feit dat er werd gestreefd naar 88,4%. Ze berekenden de veiligheidsvoorraad verkeerd omdat hun vraag niet "klokvormig" is, maar ze kozen de veiligheidsvoorraad in de veronderstelling dat dit wel het geval was. Deze vereenvoudiging resulteert in het missen van serviceniveaudoelen, waardoor de handmatige beoordeling van veel items wordt gedwongen die vervolgens handmatig "gedurende meerdere perioden" moeten worden gecontroleerd door een planner. Zou het niet beter zijn om ervoor te zorgen dat het bestelpunt vanaf het begin precies het gewenste serviceniveau had? Dit zou ervoor zorgen dat u uw serviceniveau bereikt en onnodige handmatige tussenkomst minimaliseert.

Er is een vierde probleem dat de lijst niet heeft gehaald, maar het vermelden waard is. De spreadsheet kon geen trend- of seizoenspatronen volgen. Historische gemiddelden negeren trend en seizoensgebondenheid, dus de cumulatieve vraag over de doorlooptijd die in de ROP wordt gebruikt, zal aanzienlijk minder nauwkeurig zijn voor trending of seizoensgebonden onderdelen. Het planningsteam erkende dit, maar vond het geen legitiem probleem, redenerend dat het grootste deel van de vraag onregelmatig was en niet seizoensgebonden. Het is belangrijk voor het model om trend en seizoensinvloeden op te pikken op intermitterende gegevens als die bestaan, maar we hebben niet gevonden dat hun gegevens deze patronen vertoonden. Dus we waren het erover eens dat dit geen probleem was voor hen. Maar naarmate het planningstempo toeneemt tot het punt dat de vraag in een emmer terechtkomt dagelijks, zelfs intermitterende vraag blijkt heel vaak seizoensgebonden te zijn per dag van de week en soms per week. Als je nu niet met een hogere frequentie rent, houd er dan rekening mee dat je misschien binnenkort gedwongen zult worden om de meer behendige concurrentie bij te houden. Op dat moment zal de verwerking op basis van spreadsheets het gewoon niet bij kunnen houden.

Tot slot: gebruik geen spreadsheets. Ze zijn niet bevorderlijk voor zinvolle wat-als-analyses, ze zijn te arbeidsintensief en de onderliggende logica moet worden afgezwakt om snel genoeg te kunnen worden verwerkt om bruikbaar te zijn. Kortom, ga voor doelgerichte oplossingen. En zorg ervoor dat ze in de cloud draaien.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Hoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden

    Smart IP&O wordt mogelijk gemaakt door de SmartForecasts®-prognose-engine die automatisch de meest geschikte methode voor elk item selecteert. Smart Forecast-methoden worden hieronder vermeld:

    • Eenvoudig voortschrijdend gemiddelde en enkele exponentiële afvlakking voor platte, ruisige gegevens
    • Lineair voortschrijdend gemiddelde en dubbele exponentiële afvlakking voor trendgegevens
    • Winters Additief en Winters Multiplicatief voor seizoens- en seizoens- en trendgegevens.

    Deze blog legt uit hoe elk model werkt met behulp van tijdgrafieken van historische en voorspelde gegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen.

     

    Seizoensgebondenheid
    Als u seizoensinvloeden wilt forceren (of voorkomen) in de prognose, kies dan voor Winters-modellen. Beide methoden vereisen 2 volle jaren geschiedenis.

    'Winter is multiplicatief zal de grootte van de pieken of dalen van seizoenseffecten bepalen op basis van een procentueel verschil met een trending gemiddeld volume. Het past niet goed bij items met een zeer laag volume vanwege deling door nul bij het bepalen van dat percentage. Merk in de onderstaande afbeelding op dat de grote procentuele daling van de seizoensgebonden vraag in de geschiedenis naar verwachting zal voortduren gedurende de prognosehorizon, waardoor het lijkt alsof er geen seizoensgebonden vraag is, ondanks het gebruik van een seizoensmethode.

     

    Winter's software voor multiplicatieve voorspellingsmethode

    Statistische voorspelling gemaakt met de multiplicatieve methode van Winter. 

     

    Toevoeging voor de winter zal de grootte van de pieken of dalen van seizoenseffecten bepalen op basis van een eenheidsverschil met het gemiddelde volume. Het past niet goed als er een significante trend in de gegevens is. Let op in de afbeelding hieronder dat seasonaliteit wordt nu voorspeld op basis van de gemiddelde eenheidsverandering in seizoensgebondenheid. De voorspelling geeft dus nog steeds duidelijk het seizoenspatroon weer ondanks de neerwaartse trend in zowel het niveau als de seizoenspieken/dalen.

    Software voor additieve voorspellingsmethode van Winter

    Statistische voorspelling gemaakt met de additieve methode van Winter.

     

    Trend

    Als u trend omhoog of omlaag wilt forceren (of voorkomen) om in de prognose te tonen, beperk dan de gekozen methoden tot (of verwijder de methoden van) Lineair voortschrijdend gemiddelde en Double Exponential Smoothing.

     Dubbele exponentiële afvlakking zal een langetermijntrend oppikken. Het past niet goed als er weinig historische datapunten zijn.

    Double exponential smoothing Prognosemethode software

    Statistische voorspelling geproduceerd met Double Exponential Smoothing

     

    Lineair voortschrijdend gemiddelde zal trends op kortere termijn oppikken. Het is niet geschikt voor zeer volatiele gegevens

    Lineair voortschrijdend gemiddelde Prognosemethode software

     

    Niet-trending en niet-seizoensgebonden gegevens
    Als u wilt forceren (of voorkomen) dat een gemiddelde wordt weergegeven in de prognose, beperk dan de gekozen methoden tot (of verwijder de methoden van) Eenvoudig voortschrijdend gemiddelde en Enkelvoudig exponentieel effenen.

    Enkele exponentiële afvlakking zal de meest recente gegevens zwaarder wegen en een vlakke lijnprognose produceren. Het is niet geschikt voor trending- of seizoensgegevens.

    Single exponential smoothing Prognosemethode software

    Statistische voorspelling met Single Exponential Smoothing

    Eenvoudig voortschrijdend gemiddelde zal voor elke periode een gemiddelde vinden, dat soms lijkt te wiebelen, en beter voor middelingen op langere termijn. Het is niet geschikt voor trending- of seizoensgegevens.

    Eenvoudige software voor voortschrijdend gemiddelde Voorspellingsmethode

    Statistische voorspelling met behulp van eenvoudig voortschrijdend gemiddelde

     

     

     

    Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning

    Ik wed dat uw onderhouds- en reparatieteams het goed zouden vinden om een grotere voorraad te lopen sommige reserveonderdelen als ze wisten dat de besparingen op voorraadvermindering zouden worden gebruikt om de voorraadinvestering effectiever te spreiden ander onderdelen en verhoogt het algehele serviceniveau.

    Ik verdubbel dat uw Finance-team, ondanks dat het altijd wordt uitgedaagd met het verlagen van de kosten, een gezonde voorraadverhoging zou ondersteunen als ze duidelijk konden zien dat de inkomsten profiteren van een hogere uptime, minder versnellingen en verbeteringen op het serviceniveau duidelijk opwegen tegen de extra voorraadkosten en risico.

    A ruilcurve voor reserveonderdelen stelt planningsteams voor serviceonderdelen in staat om de risico's en kosten van elke voorraadbeslissing correct te communiceren. Het is essentieel voor de planning van onderdelen en de enige manier om voorraadparameters proactief en nauwkeurig aan te passen voor elk onderdeel. Zonder dit "plannen" planners, in alle opzichten, met oogkleppen op, omdat ze niet in staat zullen zijn om de echte afwegingen te communiceren die verband houden met opslagbeslissingen.

    Als bijvoorbeeld een voorgestelde verhoging van de min/max-niveaus van een belangrijke productgroep van serviceonderdelen wordt aanbevolen, hoe weet u dan of de verhoging te hoog of te laag of precies goed is? Hoe kun je de verandering voor duizenden reserveonderdelen verfijnen? Je wilt niet en je kunt het niet. Uw voorraadbeslissingen zullen afhangen van reactieve, onderbuikgevoelens en algemene beslissingen, waardoor de serviceniveaus eronder lijden en de voorraadkosten de pan uit rijzen.

    Dus, wat is eigenlijk een afwegingscurve voor reserveonderdelen?

    Het is een op feiten gebaseerde, numerieke voorspelling die beschrijft hoe veranderingen in voorraadniveaus de voorraadwaarde, bewaarkosten en serviceniveaus zullen beïnvloeden. Voor elke eenheidswijziging in voorraadniveau zijn er kosten en baten. De uitruilcurve voor reserveonderdelen identificeert deze kosten en baten voor verschillende voorraadniveaus. Hiermee kunnen planners het voorraadniveau ontdekken dat de kosten en baten voor elk afzonderlijk item het beste in evenwicht houdt.

    Hier zijn twee vereenvoudigde voorbeelden. In afbeelding 1 laat de ruilcurve voor reserveonderdelen zien hoe het serviceniveau (waarschijnlijkheid dat er geen voorraad is) verandert afhankelijk van het bestelniveau. Hoe hoger het bestelniveau, hoe lager het voorraadrisico. Het is van cruciaal belang om te weten hoeveel service u krijgt gezien de voorraadinvestering. Hier kunt u misschien rechtvaardigen dat een voorraadtoename van een bestelpunt van 35 naar 45 de investering van 10 extra voorraadeenheden meer dan waard is, omdat het serviceniveau springt van iets minder dan 70% naar 90%, waardoor uw voorraadrisico voor het reserveonderdeel afneemt van 30% tot 10%!

     

    Kosten versus serviceniveaus voor voorraadplanning

    Afbeelding 1: kosten versus serviceniveau

     

    Omvang van voorraad versus serviceniveaus voor MRO

    Afbeelding 2: serviceniveau versus voorraadomvang

    In dit voorbeeld (Afbeelding 2) legt de afwegingscurve een veelvoorkomend probleem bloot met de inventaris van reserveonderdelen. Vaak zijn de voorraadniveaus zo hoog dat ze een negatief rendement opleveren. Na een bepaalde voorraadhoeveelheid koopt elke extra voorraadeenheid niet meer voordeel in de vorm van een hoger serviceniveau. Voorraadverminderingen kunnen worden gerechtvaardigd wanneer duidelijk is dat het voorraadniveau het punt van afnemende opbrengsten ver voorbij is. Een nauwkeurige afwegingscurve zal het punt blootleggen waar het niet langer voordelig is om voorraad toe te voegen.

    Door gebruik te maken van #probabilistischevoorspelling om de planning van onderdelen te stimuleren, kunt u deze afwegingen nauwkeurig communiceren, dit op schaal doen voor honderdduizenden onderdelen, slechte voorraadbeslissingen vermijden en serviceniveaus en kosten in evenwicht brengen. Bij Smart Software zijn we gespecialiseerd in het helpen van planners van reserveonderdelen, directeuren van materiaalbeheer en financiële leidinggevenden die MRO, reserveonderdelen en aftermarket-onderdelen beheren om deze relaties te begrijpen en te exploiteren.

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Wat te doen als een statistische prognose geen steek houdt

      Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de voorspelling er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten.

      Deze blog zal een leek helpen begrijpen wat de slimme statistische modellen zijn en hoe ze automatisch worden gekozen. Er wordt ingegaan op hoe die keuze soms mislukt, hoe u kunt weten of dat zo is en wat u kunt doen om ervoor te zorgen dat de prognoses altijd gerechtvaardigd kunnen worden. Het is belangrijk om te weten wat u kunt verwachten en hoe u de uitzonderingen kunt opvangen, zodat u kunt vertrouwen op uw prognosesysteem.

       

      Hoe methoden automatisch worden gekozen

      De criteria om automatisch één statistische methode uit een set te kiezen, zijn gebaseerd op welke methode het dichtst bij het correct voorspellen van de achtergehouden geschiedenis kwam. De eerdere geschiedenis wordt aan elke methode doorgegeven en het resultaat wordt vergeleken met de werkelijke waarden om de methode te vinden die er het dichtst bij in de buurt kwam. Die automatisch gekozen methode krijgt dan alle geschiedenis om de voorspelling te produceren. Bekijk deze blog voor meer informatie over de modelselectie https://smartcorp.com/uncategorized/statistical-forecasting-how-automatic-method-selection-works/

      Voor de meeste tijdreeksen kan dit proces trends, seizoensgebondenheid en gemiddeld volume nauwkeurig vastleggen. Maar soms komt een gekozen methode wiskundig het dichtst in de buurt van het voorspellen van de achtergehouden geschiedenis, maar projecteert deze niet op een logische manier. Dat betekent dat de door het systeem geselecteerde methode niet de beste is en voor sommigen "moeilijk te voorspellen"

       

      Moeilijk te voorspellen items

      Moeilijk te voorspellen items kunnen grote, onvoorspelbare pieken in de vraag hebben, of meestal geen vraag maar willekeurige onregelmatige pieken, of ongebruikelijke recente activiteit. Ruis in de gegevens dwaalt soms willekeurig omhoog of omlaag, en de geautomatiseerde best-pick-methode kan een op hol geslagen trend of een nulpunt voorspellen. Het zal het slechter doen dan gezond verstand en in een klein percentage van een redelijk gevarieerde groep items. U moet deze gevallen dus identificeren en reageren door de prognose te negeren of de invoer van de prognose te wijzigen.

       

      Hoe de uitzonderingen te vinden

      De beste werkwijze is om de voorspelde items te filteren of te sorteren om de items te identificeren waarvan de som van de prognose voor het volgende jaar aanzienlijk afwijkt van de overeenkomstige geschiedenis van vorig jaar. De prognosesom kan veel lager zijn dan de historie of andersom. Gebruik de meegeleverde statistieken om deze items te identificeren; vervolgens kunt u ervoor kiezen om overschrijvingen toe te passen op de prognose of de prognose-instellingen te wijzigen.

       

      Hoe de uitzonderingen op te lossen

      Wanneer de voorspelling vreemd lijkt, zal een middelingsmethode, zoals Single Exponential Smoothing of zelfs een eenvoudig gemiddelde met behulp van Freestyle, vaak een redelijkere voorspelling opleveren. Als de trend mogelijk geldig is, kunt u alleen seizoensmethoden verwijderen om een onjuist seizoensresultaat te voorkomen. Of doe het tegenovergestelde en gebruik alleen seizoensmethoden als seizoensgebondenheid wordt verwacht maar niet was geprojecteerd in de standaardprognose. U kunt de wat-als-functies gebruiken om een onbeperkt aantal prognoses te maken, te evalueren en te vergelijken en de instellingen verder te verfijnen totdat u vertrouwd bent met de prognose.

      Het opschonen van de geschiedenis, met of zonder wijziging van de automatische methodeselectie, is ook effectief bij het produceren van redelijke voorspellingen. U kunt prognoseparameters insluiten om de hoeveelheid geschiedenis die wordt gebruikt om die items te voorspellen of het aantal perioden dat aan het algoritme is doorgegeven, te verminderen, zodat eerdere, verouderde geschiedenis niet langer in aanmerking wordt genomen. U kunt pieken of dalen in de vraaggeschiedenis bewerken die bekende afwijkingen zijn, zodat ze de uitkomst niet beïnvloeden. U kunt ook samenwerken met het Smart-team om automatische detectie en verwijdering van uitschieters te implementeren, zodat gegevens voordat ze worden voorspeld al zijn opgeschoond van deze afwijkingen.

      Als de vraag echt intermitterend is, wordt het bijna onmogelijk om "nauwkeurig" per periode te voorspellen. Als een level-loading-gemiddelde niet acceptabel is, kan het effectief zijn om het artikel af te handelen door een voorraadbeleid in te stellen met een doorlooptijdprognose. U kunt er ook voor kiezen om 'hetzelfde als vorig jaar'-modellen te gebruiken die, hoewel ze niet gevoelig zijn voor nauwkeurigheid, algemeen worden geaccepteerd door het bedrijf gezien de alternatieve prognoses.

      Ten slotte, als het item zo recent is geïntroduceerd dat de algoritmen niet genoeg input hebben om nauwkeurig te voorspellen, is een eenvoudige gemiddelde of handmatige voorspelling wellicht het beste. U kunt nieuwe items identificeren door te filteren op het aantal historische perioden.

       

      Handmatige selectie van methoden

      Zodra u rijen hebt geïdentificeerd waar de prognose niet logisch is voor het menselijk oog, kunt u een kleinere subset van alle methoden kiezen om de prognoserun toe te laten en te vergelijken met de geschiedenis. Met Smart kunt u een beperkte set methoden gebruiken voor slechts één prognoserun of de beperkte set insluiten om te gebruiken voor alle prognoseruns in de toekomst. Verschillende methoden zullen de geschiedenis op verschillende manieren in de toekomst projecteren. Als u een idee heeft van hoe elk werkt, kunt u kiezen welke u wilt toestaan.

       

      Vertrouw op uw prognosetool

      Hoe meer u Slimme periode-over-periode gebruikt om uw beslissingen over hoe te voorspellen en welke historische gegevens u in overweging moet nemen, vast te leggen, hoe minder vaak u uitzonderingen zult tegenkomen, zoals beschreven in deze blog. Het invoeren van prognoseparameters is een beheersbare taak wanneer u begint met kritieke items of items met een hoge impact. Zelfs als u geen handmatige beslissingen over prognosemethoden insluit, wordt de prognose elke periode opnieuw uitgevoerd met nieuwe gegevens. Dus een item met een oneven resultaat vandaag kan in de loop van de tijd gemakkelijk voorspelbaar worden.

       

       

      Het plannen van reserveonderdelen is niet zo moeilijk als u denkt

      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt.

      Deze conclusie is gebaseerd op honderden software-implementaties die we in de loop der jaren hebben geleid. Klanten die reserveonderdelen en serviceonderdelen beheren (de laatste voor intern verbruik/MRO), en in mindere mate aftermarket-onderdelen (voor doorverkoop aan geïnstalleerde bases), hebben onze software voor onderdelenplanning consequent sneller geïmplementeerd dan hun collega's in productie en distributie.

      De belangrijkste reden is de rol bij de productie en distributie van zakelijke kennis over wat er in de toekomst zou kunnen gebeuren. In een traditionele B2B-productie- en distributieomgeving zijn er klanten en verkoop- en marketingteams die aan die klanten verkopen. Er zijn verkoopdoelen, omzetverwachtingen en budgetten. Dit betekent dat er veel zakelijke kennis is over wat er zal worden gekocht, wat zal worden gepromoot, wiens meningen moeten worden verantwoord. Er is een complexe planningslus vereist. Bij het beheer van reserveonderdelen heb je daarentegen een onderhoudsteam dat apparatuur repareert wanneer deze kapot gaat. Hoewel er vaak onderhoudsschema's zijn als richtlijn, is wat er naast een standaardlijst met verbruiksartikelen nodig is, vaak onbekend totdat een onderhoudspersoon ter plaatse is. Met andere woorden, er is gewoon niet dezelfde soort zakelijke kennis beschikbaar voor onderdelenplanners bij het nemen van voorraadbeslissingen.

      Ja, dat is een nadeel, maar het heeft ook een voordeel: het is niet nodig om een periode-voor-periode consensusvraagprognose te maken met al het werk dat daarvoor nodig is. Bij het plannen van reserveonderdelen kunt u meestal veel stappen overslaan die nodig zijn voor een typische fabrikant, distributeur of detailhandelaar. Deze over te slaan stappen omvatten:  

      1. Prognoses maken op verschillende niveaus van het bedrijf, zoals productfamilie of regio.
      2. De vraagprognose delen met verkoop, marketing en klanten.
      3. Prognoseonderdrukkingen van verkoop, marketing en klanten beoordelen.
      4. Afspraken maken over een consensusprognose die statistieken en zakelijke kennis combineert.
      5. Het meten van "prognose toegevoegde waarde" om te bepalen of overschrijvingen de prognose nauwkeuriger maken.
      6. De vraagprognose aanpassen voor bekende toekomstige promoties.
      7. Rekening houden met kannibalisatie (dwz als ik meer van product A verkoop, verkoop ik minder van product B).

      Bevrijd van een consensusvormingsproces, kunnen planners van reserveonderdelen en voorraadbeheerders rechtstreeks op hun software vertrouwen om het gebruik en het vereiste voorraadbeleid te voorspellen. Als ze toegang hebben tot een in de praktijk bewezen oplossing die intermitterende vraag aanpakt, kunnen ze snel live gaan met nauwkeurigere vraagprognoses en schattingen van bestelpunten, veiligheidsvoorraden en bestelsuggesties. Hun aandacht kan worden gericht op het verkrijgen van nauwkeurige gebruiks- en doorlooptijdgegevens van leveranciers. Het "politieke" deel van de taak kan worden beperkt tot het verkrijgen van consensus binnen de organisatie over doelstellingen op het gebied van serviceniveaus en inventarisbudgetten.

      Software voor planning van reserveonderdelen

      De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

      Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

       

       

      Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

       

      Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

       

        De rol van vertrouwen in het vraagvoorspellingsproces Deel 2: Wat vertrouwt u

        "Ongeacht hoeveel moeite er wordt gestoken in het opleiden van voorspellers en het ontwikkelen van uitgebreide ondersteuningssystemen voor prognoses, besluitvormers zullen de voorspellingen wijzigen of negeren als ze ze niet vertrouwen." — Dilek Onkal, International Journal of Forecasting 38:3 (juli-september 2022), p.802.

        De hierboven geciteerde woorden trokken mijn aandacht en leidden tot dit bericht. Degenen met een nerdachtige overtuiging, zoals uw blogger, zijn geneigd prognoses als een statistisch probleem te beschouwen. Hoewel dat duidelijk waar is, begrijpen degenen van een bepaalde leeftijd, zoals uw blogger, dat prognoses ook een sociale activiteit zijn en daarom een grote menselijke component heeft.

        Waar vertrouw je op?

        Er is een verwante dimensie van vertrouwen: niet wie vertrouw je, maar wat vertrouw je? Hiermee bedoel ik zowel data als software.

        Vertrouw op gegevens

        Vertrouwen in data ondersteunt het vertrouwen in de voorspeller die de data gebruikt. De meeste van onze klanten hebben hun gegevens in een ERP-systeem staan. Deze gegevens moeten worden begrepen als een belangrijk bedrijfsmiddel. Om de gegevens betrouwbaar te laten zijn, moeten ze de "drie C's" hebben, dwz ze moeten correct, volledig en actueel zijn.

        Correctheid is uiteraard fundamenteel. We hadden eens een klant die een nieuw, sterk prognoseproces aan het implementeren was, maar vond dat de resultaten volledig haaks stonden op hun gevoel voor wat er in het bedrijf gebeurde. Het bleek dat verschillende van hun datastromen een factor twee onjuist waren, wat een enorme fout is. Dit vertraagde natuurlijk het implementatieproces totdat ze alle grove fouten in hun vraaggegevens konden identificeren en corrigeren.

        Er is een minder voor de hand liggend punt over correctheid. Dat wil zeggen, gegevens zijn willekeurig, dus wat u nu ziet, is waarschijnlijk niet wat u hierna ziet. Het plannen van de productie op basis van de veronderstelling dat de vraag van volgende week precies hetzelfde zal zijn als de vraag van deze week is duidelijk dwaas, maar klassieke op formules gebaseerde voorspellingsmodellen zoals de hierboven genoemde exponentiële afvlakking zullen hetzelfde aantal projecteren over de hele prognosehorizon. Dit is waar op scenario's gebaseerde planning is essentieel om het hoofd te bieden aan de onvermijdelijke fluctuaties in belangrijke variabelen zoals de eisen van klanten en de doorlooptijden van leveranciers.

        Volledigheid is de tweede vereiste om gegevens te kunnen vertrouwen. Onze software haalt uiteindelijk veel van zijn waarde uit het blootleggen van de verbanden tussen operationele beslissingen (bijvoorbeeld het selecteren van bestelpunten voor het aanvullen van voorraad) en bedrijfsgerelateerde statistieken zoals voorraadkosten. Toch loopt de implementatie van prognosesoftware vaak vertraging op omdat ergens vraaginformatie beschikbaar is, maar voorraad-, bestel- en/of tekortkosten niet. Of, om nog een recent voorbeeld te noemen: een klant kon slechts de helft van zijn voorraad reserveonderdelen voor repareerbare onderdelen op de juiste maat houden, omdat niemand had bijgehouden wanneer de andere helft kapot ging, wat betekent dat er geen informatie was over de gemiddelde tijd vóór storing (MTBF). , wat betekent dat het niet mogelijk was om het pechgedrag van de helft van de vloot van repareerbare reserveonderdelen te modelleren.

        Ten slotte is de valuta van gegevens van belang. Naarmate de snelheid van zakendoen toeneemt en bedrijfsplanningscycli afnemen van een driemaandelijks of maandelijks tempo naar een wekelijks of dagelijks tempo, wordt het wenselijk om de flexibiliteit te benutten die wordt geboden door 's nachts uploads van dagelijkse transactiegegevens naar de cloud. Dit maakt hoogfrequente aanpassingen van prognoses en/of voorraadbeheerparameters mogelijk voor artikelen met een hoge volatiliteit en plotselinge verschuivingen in de vraag. Hoe verser de gegevens, hoe betrouwbaarder de analyse.

        Vertrouw op software voor vraagvoorspelling

        Zelfs met gegevens van hoge kwaliteit moeten voorspellers nog steeds vertrouwen op de analytische software die de gegevens verwerkt. Dit vertrouwen moet zich uitstrekken tot zowel de software zelf als de computationele omgeving waarin deze functioneert.

        Als voorspellers lokale software gebruiken, moeten ze vertrouwen op hun eigen IT-afdelingen om de gegevens te beschermen en beschikbaar te houden voor gebruik. Als ze in plaats daarvan de kracht van cloudgebaseerde analyses willen benutten, moeten klanten hun vertrouwelijke informatie toevertrouwen aan hun softwareleveranciers. Software op professioneel niveau, zoals de onze, rechtvaardigt het vertrouwen van klanten door middel van SOC 2-certificering. SOC 2-certificering is ontwikkeld door het American Institute of CPA's en definieert criteria voor het beheer van klantgegevens op basis van vijf "trustservice-principes": beveiliging, beschikbaarheid, verwerkingsintegriteit, vertrouwelijkheid en privacy.

        Hoe zit het met de software zelf? Wat is er nodig om het betrouwbaar te maken? De belangrijkste criteria hierbij zijn de juistheid van algoritmen en functionele betrouwbaarheid. Als de leverancier een professioneel programma-ontwikkelingsproces heeft, is de kans klein dat de software door een programmeerfout uiteindelijk de verkeerde cijfers berekent. En als de leverancier een rigoureus kwaliteitsborgingsproces heeft, is de kans klein dat de software crasht net wanneer de voorspeller een deadline heeft of een pop-upanalyse voor een speciale situatie moet verwerken.

        Overzicht

        Om bruikbaar te zijn, moeten voorspellers en hun voorspellingen worden vertrouwd door besluitvormers. Dat vertrouwen is afhankelijk van kenmerken van voorspellers en hun processen en communicatie. Het hangt ook af van de kwaliteit van de gegevens en software die worden gebruikt bij het maken van de prognoses.

         

        Lees hier het 1e deel van deze Blog “Who do you Trust”: https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-1-who/