Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Ik begin met een bekentenis: ik ben een algoritme-man. Mijn hart leeft in de ‘machinekamer’ van onze software, waar razendsnelle berekeningen heen en weer gaan door de AWS-cloud, waardoor vraag- en aanbodscenario’s worden gegenereerd die worden gebruikt als leidraad voor belangrijke beslissingen over vraagvoorspelling en voorraadbeheer.

Maar ik erken dat het doelwit van al die mooie, woedende berekeningen het brein van de baas is, de persoon die verantwoordelijk is om ervoor te zorgen dat op de meest efficiënte en winstgevende manier aan de vraag van de klant wordt voldaan. Deze blog gaat dus over Smart Operational Analytics (SOA), waarmee rapportages voor het management worden gemaakt. Of, zoals ze in het leger worden genoemd, sit-reps.

Alle berekeningen die door de planners met behulp van onze software worden begeleid, worden uiteindelijk gedestilleerd in de SOA-rapporten voor het management. De rapporten richten zich op vijf gebieden: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

Voorraadanalyse

Deze rapporten houden de huidige voorraadniveaus in de gaten en identificeren gebieden die verbetering behoeven. De nadruk ligt op de huidige voorraadaantallen en hun status (voorhanden, onderweg, in quarantaine), voorraadwisselingen en excessen versus tekorten.

Voorraadprestaties

Deze rapporten houden Key Performance Indicators (KPI's) bij, zoals opvullingspercentages, serviceniveaus en voorraadkosten. De analytische berekeningen elders in de software begeleiden u bij het behalen van uw KPI-doelen door Key Performance Predictions (KPP's) te berekenen op basis van aanbevolen instellingen voor bijvoorbeeld bestelpunten en bestelhoeveelheden. Maar soms komen er verrassingen voor, of wordt het operationele beleid niet uitgevoerd zoals aanbevolen, waardoor er altijd enige discrepantie zal zijn tussen KPP's en KPI's.

Voorraadtrends

Weten waar de zaken er vandaag voor staan is belangrijk, maar zien waar de zaken zich ontwikkelen is ook waardevol. Deze rapporten onthullen trends in de vraag naar artikelen, voorraadgebeurtenissen, het gemiddelde aantal beschikbare dagen, de gemiddelde verzendtijd en meer.

Prestaties van leveranciers

Uw bedrijf kan niet optimaal presteren als uw leveranciers u naar beneden halen. Deze rapporten monitoren de prestaties van leveranciers op het gebied van de nauwkeurigheid en snelheid van het invullen van aanvullingsorders. Als u meerdere leveranciers voor hetzelfde artikel heeft, kunt u deze met elkaar vergelijken.

Vraagafwijkingen

Uw gehele voorraadsysteem is vraaggestuurd en alle voorraadbeheerparameters worden berekend na het modelleren van de artikelvraag. Dus als er iets vreemds gebeurt aan de vraagzijde, moet u waakzaam zijn en u voorbereiden op het herberekenen van zaken als min- en max-waarden voor artikelen die zich vreemd beginnen te gedragen.

Overzicht

Het eindpunt van alle enorme berekeningen in onze software is het dashboard dat het management laat zien wat er aan de hand is, wat de toekomst biedt en waar de aandacht op moet worden gevestigd. Smart Inventory Analytics is het onderdeel van ons software-ecosysteem gericht op de C-Suite van uw bedrijf.

 Smart Reporting Studio Voorraadbeheer Leveringssoftware

Figuur 1: Enkele voorbeeldrapportages in grafische vorm

 

Je moet samenwerken met de algoritmen

Ruim veertig jaar geleden bestond Smart Software uit drie vrienden die in de kelder van een kerk een bedrijf begonnen te starten. Tegenwoordig is ons team uitgebreid en opereert vanuit meerdere locaties in Massachusetts, New Hampshire en Texas, met teamleden in Engeland, Spanje, Armenië en India. Net als velen van u in uw functie hebben wij manieren gevonden om gedistribueerde teams voor ons en voor u te laten werken.

This note is about a different kind of teamwork: the collaboration between you and our software that happens at your fingertips. I often write about the software itself and what goes on “under the hood”. This time, my subject is how you should best team up with the software.

Our software suite, Smart Inventory Planning and Optimization (Smart IP&O™) is capable of massively detailed calculations of future demand and the inventory control parameters (e.g., reorder points and order quantities) that would most effectively manage that demand. But your input is required to make the most of all that power. You need to team up with the algorithms.

That interaction can take several forms. You can start by simply assessing how you are doing now. The report writing functions in Smart IP&O (Smart Operational Analytics™) can collate and analyze all your transactional data to measure your Key Performance Indicators (KPIs), both financial (e.g., inventory investment) and operational (e.g., fill rates).

The next step might be to use SIO (Smart Inventory Optimization™), the inventory analytics within SIP&O, to play “what-if” games with the software. For example, you might ask “What if we reduced the order quantity on item 1234 from 50 to 40?” The software grinds the numbers to let you know how that would play out, then you react. This can be useful, but what if you have 50,000 items to consider? You would want to do what-if games for a few critical items, but not all of them.

De echte kracht zit hem in het gebruik van de automatische optimalisatiemogelijkheden in SIO. Hier kunt u op grote schaal samenwerken met de algoritmen. Op basis van uw zakelijke oordeel kunt u “groepen” creëren, dat wil zeggen verzamelingen van items die enkele cruciale kenmerken gemeen hebben. U kunt bijvoorbeeld een groep maken voor 'kritieke reserveonderdelen voor klanten van elektriciteitsbedrijven', bestaande uit 1.200 onderdelen. Vervolgens kunt u, opnieuw op basis van uw zakelijk oordeel, specificeren welke standaard voor de beschikbaarheid van artikelen moet gelden voor alle artikelen in die groep (bijvoorbeeld: “minstens 95% kans dat de voorraad binnen een jaar niet op voorraad is”). Nu kan de software het overnemen en automatisch de beste bestelpunten en bestelhoeveelheden voor elk van deze artikelen berekenen om de gewenste artikelbeschikbaarheid tegen de laagst mogelijke totale kosten te bereiken. En dat, beste lezer, is krachtig teamwerk.

 

 

Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie.

Nauwkeurigheid wordt weergegeven als een percentage tussen nul en 100, terwijl foutpercentages bij nul beginnen maar geen bovengrens hebben. Rapporten van MAPE (gemiddelde absolute procentuele fout) of andere foutstatistieken kunnen de titel 'voorspellingsnauwkeurigheid'-rapporten krijgen, waardoor het onderscheid vervaagt. Het kan dus zijn dat u wilt weten hoe u vanuit het foutenperspectief kunt overstappen naar het nauwkeurigheidsperspectief dat uw bedrijf omarmt. In deze blog wordt aan de hand van enkele voorbeelden beschreven hoe.

Nauwkeurigheidsgegevens worden zo berekend dat wanneer de werkelijke waarde gelijk is aan de voorspelling, de nauwkeurigheid 100% is en wanneer de voorspelling het dubbele of de helft is van de werkelijke, de nauwkeurigheid 0% is. Rapporten waarin de voorspelling met de werkelijkheid wordt vergeleken, bevatten vaak het volgende:

  • De daadwerkelijke
  • De prognose
  • Eenheidsfout = Prognose – Werkelijk
  • Absolute fout = Absolute waarde van eenheidsfout
  • Absolute %-fout = Abs-fout / Werkelijk, als een %
  • Nauwkeurigheid % = 100% – Absolute %-fout

Bekijk een paar voorbeelden die het verschil in aanpak illustreren. Stel dat de Werkelijke = 8 en de voorspelling is 10.

Eenheidsfout is 10 – 8 = 2

Absolute %-fout = 2/8, als % = 0,25 * 100 = 25%

Nauwkeurigheid = 100% – 25% = 75%.

Laten we nu zeggen dat de werkelijke waarde 8 is en de voorspelling 24.

Eenheidsfout is 24– 8 = 16

Absolute %-fout = 16/8 als % = 2 * 100 = 200%

Nauwkeurigheid = 100% – 200% = negatief is ingesteld op 0%.

In het eerste voorbeeld leveren nauwkeurigheidsmetingen dezelfde informatie op als foutmetingen, aangezien de voorspelling en de werkelijke situatie al relatief dicht bij elkaar liggen. Maar als de fout meer dan het dubbele is van de werkelijke, komen de nauwkeurigheidsmetingen uit op nul. Het geeft wel correct aan dat de voorspelling helemaal niet accuraat was. Maar het tweede voorbeeld is nauwkeuriger dan een derde, waarbij de werkelijke waarde 8 is en de voorspelling 200. Dat is een onderscheid dat een nauwkeurigheidsbereik van 0 tot 100% niet registreert. In dit laatste voorbeeld:

Eenheidsfout is 200 – 8 = 192

Absolute %-fout = 192/8, als % = 24 * 100 = 2,400%

Nauwkeurigheid = 100% – 2.400% = negatief is ingesteld op 0%.

Foutstatistieken blijven informatie verschaffen over hoe ver de voorspelling afwijkt van de werkelijke en geven aantoonbaar een betere weergave van de nauwkeurigheid van de voorspelling.

Wij moedigen aan om het foutperspectief te hanteren. U hoopt eenvoudigweg op een klein foutpercentage dat aangeeft dat de voorspelling niet ver van de werkelijkheid ligt, in plaats van te hopen op een groot nauwkeurigheidspercentage dat aangeeft dat de voorspelling dicht bij de werkelijkheid ligt. Deze mentaliteitsverandering biedt dezelfde inzichten en elimineert vervormingen.

 

 

 

 

Het gebruik van belangrijke prestatievoorspellingen om het voorraadbeleid te plannen

Ik kan me niet voorstellen dat ik een voorraadplanner ben op het gebied van reserveonderdelen, distributie of productie en dat ik veiligheidsvoorraden, bestelpunten en bestelsuggesties moet creëren zonder gebruik te maken van belangrijke prestatievoorspellingen van serviceniveaus, opvullingspercentages en voorraadkosten:

Belangrijke prestatievoorspellingen gebruiken om voorraadbeleid te plannen

De Inventory Optimization-oplossing van Smart genereert kant-en-klare belangrijke prestatievoorspellingen die op dynamische wijze simuleren hoe uw huidige voorraadbeleid zal presteren ten opzichte van mogelijke toekomstige eisen. Het rapporteert hoe vaak u voorraad opslaat, de omvang van de voorraad, de waarde van uw voorraad, opslagkosten en meer. Hiermee kunt u problemen proactief identificeren voordat ze zich voordoen, zodat u op korte termijn corrigerende maatregelen kunt nemen. U kunt 'wat-als'-scenario's creëren door doelgerichte serviceniveaus in te stellen en doorlooptijden aan te passen, zodat u de voorspelde impact van deze wijzigingen kunt zien voordat u zich ertoe verbindt.

Bijvoorbeeld,

  • U kunt zien of een voorgestelde overstap van het huidige serviceniveau van 90% naar een gericht serviceniveau van 97% financieel voordelig is
  • U kunt automatisch vaststellen of een ander serviceniveaudoel nog winstgevender is voor uw bedrijf dan het voorgestelde doel.
  • U kunt precies zien hoeveel u nodig heeft om uw herbestelpunten te verhogen om een langere doorlooptijd mogelijk te maken.

 

Als u planners niet van de juiste tools voorziet, worden ze gedwongen voorraadbeleid en veiligheidsvoorraadniveaus in te stellen en vraagprognoses te maken in Excel of met verouderde ERP-functionaliteit. Als u niet weet hoe het beleid naar verwachting zal presteren, is uw bedrijf slecht uitgerust om de voorraad correct toe te wijzen. Neem vandaag nog contact met ons op en ontdek hoe wij u kunnen helpen!

 

Elk voorspellingsmodel is goed waarvoor het is ontworpen

Wanneer u traditionele extrapolatieve voorspellingstechnieken moet gebruiken.

Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is. 

Extrapolatieve methoden presteren goed wanneer de vraag een hoog volume heeft en niet te gedetailleerd is (dat wil zeggen, de vraag wordt maandelijks of driemaandelijks gespreid). Ze zijn ook erg snel en gebruiken niet zoveel computerbronnen als probabilistische en ML-methoden. Dit maakt ze zeer toegankelijk.

Zijn de traditionele methoden even nauwkeurig als nieuwere voorspellingsmethoden? Smart heeft ontdekt dat extrapolatieve methoden het zeer slecht doen als de vraag intermitterend is. Wanneer de vraag echter groter is, doen ze het slechts iets slechter dan onze nieuwe probabilistische methoden wanneer de vraag maandelijks wordt gesegmenteerd. Gezien hun toegankelijkheid, snelheid en het feit dat u prognoseoverschrijvingen gaat toepassen op basis van bedrijfskennis, zal het verschil in basislijnnauwkeurigheid hier niet materieel zijn.

Het voordeel van geavanceerdere modellen zoals de GEN2-probabilistische methoden van Smart is wanneer u patronen moet voorspellen met behulp van gedetailleerdere buckets zoals dagelijkse (of zelfs wekelijkse) gegevens. Dit komt omdat probabilistische modellen patronen van de dag van de week, de week van de maand en de maand van het jaar kunnen simuleren die met eenvoudigere technieken verloren zullen gaan. Heeft u ooit geprobeerd de dagelijkse seizoensinvloeden te voorspellen met een Wintermodel? Hier is een hint: het gaat niet werken en vereist veel techniek.

Probabilistische methoden bieden ook waarde die verder gaat dan de basisvoorspelling, omdat ze scenario's genereren die kunnen worden gebruikt bij stresstests voor voorraadbeheermodellen. Dit maakt ze geschikter om bijvoorbeeld te beoordelen hoe een verandering in het bestelpunt de voorraadkansen, opvullingspercentages en andere KPI's zal beïnvloeden. Door duizenden mogelijke aanvragen gedurende vele doorlooptijden te simuleren (die zelf in scenariovorm worden gepresenteerd), krijgt u een veel beter idee van hoe uw huidige en voorgestelde voorraadbeleid zal presteren. U kunt betere beslissingen nemen over waar u gerichte voorraadverhogingen en -verlagingen kunt doorvoeren.

Gooi dus nog niet het oude weg voor het nieuwe. Weet gewoon wanneer je een hamer nodig hebt en wanneer je een drilboor nodig hebt.

 

 

 

 

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Wat is er anders aan voorraadplanning voor onderhoud, reparatie en bewerkingen (MRO) vergeleken met voorraadplanning in productie- en distributieomgevingen? Kortom, het is de aard van de vraagpatronen in combinatie met het gebrek aan bruikbare bedrijfskennis.

Vraagpatronen

Fabrikanten en distributeurs hebben de neiging zich te concentreren op de topverkopers die het grootste deel van hun omzet genereren. Er is doorgaans een grote vraag naar deze artikelen, die relatief eenvoudig te voorspellen zijn met traditionele tijdreeksmodellen die inspelen op voorspelbare trends en/of seizoensinvloeden. Daarentegen hebben MRO-planners bijna altijd te maken met een intermitterende vraag, die schaarser, willekeuriger en moeilijker te voorspellen is. Bovendien zijn de fundamentele hoeveelheden van belang verschillend. MRO-planners geven uiteindelijk het meeste om de ‘wanneer’-vraag: wanneer gaat er iets kapot? Terwijl de anderen zich concentreren op de “hoeveel” vraag van verkochte eenheden.

 

Zakelijke kennis

Productie- en distributieplanners kunnen vaak rekenen op het verzamelen van klant- en verkoopfeedback, die kan worden gecombineerd met statistische methoden om de nauwkeurigheid van de prognoses te verbeteren. Aan de andere kant zijn lagers, tandwielen, verbruiksartikelen en repareerbare onderdelen zelden bereid hun mening te delen. Met MRO is bedrijfskennis over welke onderdelen nodig zijn en wanneer niet betrouwbaar (behalve gepland onderhoud wanneer verbruiksartikelen in grotere volumes worden vervangen). Het succes van de MRO-voorraadplanning gaat dus slechts zo ver als het vermogen van hun waarschijnlijkheidsmodellen om toekomstig gebruik te voorspellen. En omdat de vraag zo wisselend is, kunnen ze met traditionele benaderingen niet voorbij Go komen.

 

Methoden voor MRO

In de praktijk is het gebruikelijk dat MRO- en activa-intensieve bedrijven hun voorraden beheren door hun toevlucht te nemen tot statische Min/Max-niveaus op basis van subjectieve veelvouden van gemiddeld gebruik, aangevuld met incidentele handmatige aanpassingen op basis van onderbuikgevoelens. Het proces wordt een slechte mix van statisch en reactief, met als resultaat dat er veel tijd en geld wordt verspild aan het versnellen.

Er zijn alternatieve planningsmethoden die meer op wiskunde en data zijn gebaseerd, hoewel deze stijl van plannen bij MRO minder gebruikelijk is dan in de andere domeinen. Er zijn twee toonaangevende benaderingen voor het modelleren van defecten aan onderdelen en machines: modellen gebaseerd op de betrouwbaarheidstheorie en modellen voor ‘conditiegebaseerd onderhoud’ gebaseerd op realtime monitoring.

 

Betrouwbaarheidsmodellen

Betrouwbaarheidsmodellen zijn de eenvoudigste van de twee en vereisen minder gegevens. Ze gaan ervan uit dat alle artikelen van hetzelfde type, bijvoorbeeld een bepaald reserveonderdeel, statistisch gelijkwaardig zijn. Hun belangrijkste onderdeel is een ‘gevarenfunctie’, die het risico op falen in het volgende korte tijdsinterval beschrijft. De gevarenfunctie kan worden vertaald in iets dat beter geschikt is voor besluitvorming: de ‘overlevingsfunctie’, wat de waarschijnlijkheid is dat het item nog steeds werkt na X gebruiksduur (waarbij X kan worden uitgedrukt in dagen, maanden, kilometers, gebruik, enz.). Figuur 1 toont een constante gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO- en reserveonderdelenfunctie en de overlevingsfunctie ervan

Figuur 1: Constante gevarenfunctie en zijn overlevingsfunctie

 

Een gevarenfunctie die niet verandert, houdt in dat alleen willekeurige ongelukken een storing veroorzaken. Een gevaarfunctie die in de loop van de tijd toeneemt, impliceert daarentegen dat het artikel versleten is. En een afnemende gevaarfunctie impliceert dat een item zich vestigt. Figuur 2 toont een toenemende gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO en reserveonderdelen Vergroten van de gevaarfunctie en overlevingsfunctie

Figuur 2: Toenemende gevarenfunctie en zijn overlevingsfunctie

 

Betrouwbaarheidsmodellen worden vaak gebruikt voor goedkope onderdelen, zoals mechanische bevestigingsmiddelen, waarvan de vervanging misschien niet moeilijk of duur is (maar toch essentieel kan zijn).

 

Conditiegebaseerd onderhoud

Modellen gebaseerd op real-time monitoring worden gebruikt ter ondersteuning van condition-based onderhoud (CBM) voor dure zaken als straalmotoren. Deze modellen gebruiken gegevens van sensoren die in de items zelf zijn ingebed. Dergelijke gegevens zijn doorgaans complex en bedrijfseigen, evenals de waarschijnlijkheidsmodellen die door de gegevens worden ondersteund. Het voordeel van real-time monitoring is dat je problemen kunt zien aankomen, dat wil zeggen dat de verslechtering zichtbaar wordt gemaakt en dat voorspellingen kunnen voorspellen wanneer het item de rode lijn zal bereiken en daarom uit het speelveld moet worden gehaald. Dit maakt geïndividualiseerd, proactief onderhoud of vervanging van het artikel mogelijk.

Figuur 3 illustreert het soort gegevens dat in CBM wordt gebruikt. Elke keer dat het systeem wordt gebruikt, is er een bijdrage aan de cumulatieve slijtage ervan. (Houd er echter rekening mee dat gebruik soms de staat van het apparaat kan verbeteren, bijvoorbeeld wanneer regen een machine koel houdt). U kunt de algemene trend naar boven zien richting een rode lijn, waarna het apparaat onderhoud nodig heeft. U kunt de cumulatieve slijtage extrapoleren om in te schatten wanneer deze de rode lijn zal bereiken en dienovereenkomstig plannen.

 

MRO en Spare Parts real-time monitoring voor condition-based onderhoud

Figuur 3: Ter illustratie van real-time monitoring voor conditiegebaseerd onderhoud

 

Voor zover ik weet, maakt niemand zulke modellen van klanten met eindproducten om te voorspellen wanneer en hoeveel ze de volgende keer zullen bestellen, misschien omdat de klanten er bezwaar tegen zouden hebben om voortdurend hersenmonitors te dragen. Maar CBM, met zijn complexe monitoring en modellering, wint aan populariteit voor systemen die niet kunnen falen, zoals straalmotoren. Ondertussen hebben klassieke betrouwbaarheidsmodellen nog steeds veel waarde voor het beheer van grote vloten met goedkopere maar nog steeds essentiële artikelen.

 

Smart's aanpak
De bovengenoemde op condities gebaseerde onderhouds- en betrouwbaarheidsbenaderingen vereisen een buitensporige last voor het verzamelen en opschonen van gegevens die veel MRO-bedrijven niet aankunnen. Voor die bedrijven biedt Smart een aanpak waarbij geen betrouwbaarheidsmodellen hoeven te worden ontwikkeld. In plaats daarvan exploiteert het gebruiksgegevens op een andere manier. Het maakt gebruik van op waarschijnlijkheid gebaseerde modellen van zowel gebruik als doorlooptijden van leveranciers om duizenden mogelijke scenario's voor doorlooptijden van bevoorrading en vraag te simuleren. Het resultaat is een nauwkeurige verdeling van de vraag en de doorlooptijden voor elk verbruiksonderdeel, die kan worden benut om de optimale voorraadparameters te bepalen. Figuur 4 toont een simulatie die begint met een scenario voor de vraag naar reserveonderdelen (bovenste grafiek) en vervolgens een scenario oplevert van voorhanden aanbod voor bepaalde keuzes van Min/Max-waarden (onderste lijn). Key Performance Indicators (KPI's) kunnen worden geschat door de resultaten van veel van dergelijke simulaties te middelen.

MRO- en reserveonderdelensimulatie van de vraag en voorraad

Figuur 4: Een voorbeeld van een simulatie van de vraag naar reserveonderdelen en de voorhanden voorraad

U kunt hier lezen over de aanpak van Smart bij het voorspellen van reserveonderdelen: https://smartcorp.com/wp-content/uploads/2019/10/Probabilistic-Forecasting-for-Intermittent-Demand.pdf

 

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.