Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

Het begrijpen en implementeren van voorraadoptimalisatietechnologie is om verschillende redenen belangrijk. Ten eerste heeft het een directe invloed op het vermogen van een bedrijf om snel aan de eisen van de klant te voldoen, waardoor de klanttevredenheid en loyaliteit worden beïnvloed. Ten tweede houdt effectief voorraadbeheer de operationele kosten onder controle, waardoor onnodige voorraad wordt verminderd en het risico op stockouts of overstock wordt geminimaliseerd. In een tijdperk waarin de marktomstandigheden snel veranderen, kan het hebben van een robuust systeem om deze aspecten te beheren het verschil zijn tussen bloeien en alleen maar overleven.

De kern van voorraadbeheer ligt in een paradox: de noodzaak om voorbereid te zijn op de fluctuerende vraag, zonder te bezwijken voor de valkuilen van overbevoorrading, wat kan leiden tot hogere voorraadkosten, veroudering en verspilling van hulpbronnen. Omgekeerd kan een tekort aan voorraad resulteren in voorraadtekorten, omzetverlies en verminderde klanttevredenheid, wat uiteindelijk gevolgen heeft voor de reputatie en het bedrijfsresultaat van een bedrijf. De onvoorspelbare aard van de marktvraag, verergerd door mogelijke verstoringen van de toeleveringsketen en veranderend consumentengedrag, maakt deze evenwichtsoefening ingewikkelder.

Technologie speelt hier een cruciale rol. Moderne software voor voorraadoptimalisatie integreert probabilistische modellen, geavanceerde voorspellingsalgoritmen en simulatiemogelijkheden. Deze systemen helpen bedrijven snel te reageren op veranderende marktomstandigheden. Bovendien bevordert de adoptie van dergelijke technologie een cultuur van datagestuurde besluitvorming, waardoor bedrijven niet alleen maar reageren op onzekerheden, maar proactief strategieën ontwikkelen om de gevolgen ervan te verzachten.

Hier volgen korte discussies over de relevante algoritmische technologieën.

Probabilistische voorraadoptimalisatie: Traditionele benaderingen van voorraadbeheer zijn gebaseerd op deterministische modellen die uitgaan van een statische, voorspelbare wereld. Deze modellen wankelen als ze geconfronteerd worden met variabiliteit en onzekerheid. Maak kennis met probabilistische voorraadoptimalisatie, een paradigma dat de willekeur omarmt die inherent is aan supply chain-processen. Deze aanpak maakt gebruik van statistische modellen om de onzekerheden in vraag en aanbod weer te geven, waardoor bedrijven rekening kunnen houden met een volledig scala aan mogelijke uitkomsten.

Geavanceerde prognoses:  Een hoeksteen van effectieve voorraadoptimalisatie is het vermogen om nauwkeurig te anticiperen op de toekomstige vraag. Geavanceerde voorspellingstechnieken, zoals [we verkopen dit niet buiten SmartForecasts of misschien zelfs niet meer daar, dus vermeld het niet], tijdreeksanalyse en machinaal leren, extraheren exploiteerbare patronen uit historische gegevens.

Berekening van de veiligheidsvoorraad: een schild tegen onzekerheid:

Prognoses die schattingen van hun eigen onzekerheid bevatten, maken berekeningen van de veiligheidsvoorraad mogelijk. De veiligheidsvoorraad fungeert als buffer tegen de onvoorspelbaarheid van de doorlooptijden van vraag en aanbod. Het bepalen van het optimale niveau van de veiligheidsvoorraad is een cruciale uitdaging die probabilistische modellen goed kunnen aanpakken. Met de juiste veiligheidsvoorraden kunnen bedrijven een hoog serviceniveau handhaven, waardoor de productbeschikbaarheid wordt gegarandeerd zonder de last van overmatige voorraad.

Scenarioplanning: voorbereiden op meerdere toekomsten:

De toekomst is inherent onzeker en één enkele voorspelling kan nooit alle mogelijke scenario's omvatten. Geavanceerde methoden die een reeks realistische vraagscenario's creëren, zijn de essentiële vorm van probabilistische voorraadoptimalisatie. Met deze technieken kunnen bedrijven de implicaties van meerdere toekomsten onderzoeken, van best-case tot worst-case situaties. Door op deze scenario’s te anticiperen, kunnen bedrijven hun veerkracht vergroten in het licht van de marktvolatiliteit.

Met vertrouwen door de toekomst navigeren

Het onzekere landschap van de huidige zakelijke omgeving maakt een verschuiving noodzakelijk van traditionele voorraadbeheerpraktijken naar meer geavanceerde, probabilistische benaderingen. Door de principes van probabilistische voorraadoptimalisatie te omarmen, kunnen bedrijven een duurzaam evenwicht vinden tussen uitmuntende service en kostenefficiëntie. Door geavanceerde voorspellingstechnieken, strategische veiligheidsvoorraadberekeningen en scenarioplanning te integreren, ondersteund door Smart Inventory Planning and Optimization (Smart IP&O), kunnen bedrijven onzekerheid omzetten van een uitdaging in een kans. Bedrijven die deze aanpak omarmen, melden aanzienlijke verbeteringen in serviceniveaus, verlagingen van voorraadkosten en verbeterde flexibiliteit van de toeleveringsketen.

Minder kritieke artikelen die naar verwachting een serviceniveau van 99%+ zullen bereiken, vertegenwoordigen bijvoorbeeld mogelijkheden om de voorraad te verminderen. Door lagere serviceniveaus te richten op minder kritieke artikelen, zal de voorraad in de loop van de tijd “de juiste omvang” hebben voor het nieuwe evenwicht, waardoor de voorraadkosten en de waarde van de aanwezige voorraad afnemen. Een groot openbaarvervoersysteem verminderde de voorraad met ruim $4.000.000, terwijl het serviceniveau verbeterde.

Het optimaliseren van de voorraadniveaus betekent ook dat de besparingen die op één subset van artikelen worden gerealiseerd, opnieuw kunnen worden toegewezen aan een bredere portefeuille van artikelen die op voorraad zijn, waardoor inkomsten kunnen worden gerealiseerd die anders verloren zouden gaan. Een toonaangevende distributeur was in staat een breder portfolio aan onderdelen op voorraad te houden dankzij de besparingen dankzij voorraadreducties en een grotere beschikbaarheid van onderdelen door 18%.

 

 

 

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Aanvankelijk, in de jaren tachtig, werd de gebruikelijke praktijk van het gebruik van jaarlijkse gegevens voor prognoses en de introductie van maandelijkse gegevens als innovatief beschouwd. Deze periode markeerde het begin van een trend in de richting van het verhogen van de resolutie van data-analyse, waardoor bedrijven snellere verschuivingen in de marktdynamiek kunnen opvangen en hierop kunnen reageren. Naarmate we verder kwamen in de jaren 2000, was de norm van maandelijkse data-analyse ingeburgerd, maar de 'cool kids' – vernieuwers aan de rand van business analytics – begonnen te experimenteren met wekelijkse data. Deze verschuiving werd gedreven door de noodzaak om de bedrijfsactiviteiten te synchroniseren met de steeds volatielere marktomstandigheden en het consumentengedrag dat snellere reacties vergde dan maandelijkse cycli konden bieden. Tegenwoordig, in de jaren 2020, is de grens weliswaar nog steeds gebruikelijk, maar is de grens opnieuw verschoven, dit keer naar dagelijkse data-analyse, waarbij sommige pioniers zich zelfs aan uuranalyses wagen.

De echte kracht van dagelijkse data-analyse ligt in het vermogen om een gedetailleerd beeld te geven van de bedrijfsvoering, waarbij dagelijkse schommelingen worden vastgelegd die door maandelijkse of wekelijkse gegevens over het hoofd kunnen worden gezien. De complexiteit van dagelijkse gegevens vereist echter geavanceerde analytische benaderingen om betekenisvolle inzichten te verkrijgen. Op dit niveau vereist het begrijpen van de vraag het worstelen met concepten als wisselvalligheid, seizoensinvloeden, trends en volatiliteit. Intermittentie, of het optreden van dagen zonder vraag, wordt duidelijker bij een dagelijkse granulariteit en vereist gespecialiseerde voorspellingstechnieken zoals de methode van Croston voor nauwkeurige voorspellingen. Seizoensgebondenheid op dagelijks niveau kan meerdere patronen aan het licht brengen, zoals hogere verkopen in het weekend of op feestdagen, die maandelijkse gegevens zouden maskeren. Trends kunnen worden waargenomen als stijgingen of dalingen van de vraag op de korte termijn, waardoor flexibele aanpassingsstrategieën nodig zijn. Ten slotte wordt de volatiliteit op dagelijks niveau geaccentueerd, wat significantere schommelingen in de vraag laat zien dan uit maandelijkse of wekelijkse analyses blijkt, wat van invloed kan zijn op de voorraadbeheerstrategieën en de behoefte aan buffervoorraden. Dit niveau van complexiteit onderstreept de behoefte aan geavanceerde analytische hulpmiddelen en expertise op het gebied van dagelijkse data-analyse.

Kortom, de evolutie van minder frequente naar dagelijkse tijdreeksvoorspellingen markeert een substantiële verschuiving in de manier waarop bedrijven data-analyse benaderen. Deze transitie weerspiegelt niet alleen het steeds snellere tempo van het bedrijfsleven, maar onderstreept ook de behoefte aan tools die een grotere granulariteit van de gegevens aankunnen. De toewijding van Smart Software aan het verfijnen van de analytische mogelijkheden voor het beheren van dagelijkse gegevens benadrukt de bredere beweging van de sector naar meer dynamische, responsieve en datagestuurde besluitvorming. Deze verschuiving gaat niet alleen over het bijhouden van de tijd, maar over het benutten van gedetailleerde inzichten om concurrentievoordelen te creëren in een steeds veranderende zakelijke omgeving.

 

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

Spreadsheets zijn weliswaar flexibel vanwege hun oneindige aanpasbaarheid, maar zijn in wezen handmatig van aard en vereisen aanzienlijk gegevensbeheer, menselijke inbreng en toezicht. Dit vergroot het risico op fouten, van eenvoudige fouten bij het invoeren van gegevens tot complexe formulefouten, die trapsgewijze effecten veroorzaken die de voorspellingen negatief beïnvloeden. Bovendien zijn spreadsheetgebaseerde processen, ondanks de vooruitgang op het gebied van samenwerkingsfuncties die meerdere gebruikers in staat stellen om met een gemeenschappelijk blad te communiceren, vaak in silo's ondergebracht. De houder van het spreadsheet houdt de gegevens vast. Wanneer dit gebeurt, ontstaan er veel bronnen van datawaarheid. Zonder het vertrouwen van een overeengekomen, zuivere en automatisch bijgewerkte gegevensbron beschikken organisaties niet over de noodzakelijke basis waarop voorspellende modellen, prognoses en analyses kunnen worden gebouwd.

Geavanceerde planningssystemen zoals Smart IP&O zijn daarentegen ontworpen om deze beperkingen te overwinnen. Dergelijke systemen zijn gebouwd om automatisch gegevens op te nemen via API of bestanden van ERP- en EAM-systemen, die gegevens te transformeren met behulp van ingebouwde ETL-tools en grote hoeveelheden gegevens efficiënt te verwerken. Hierdoor kunnen bedrijven complexe inventarisatie- en prognosetaken met grotere nauwkeurigheid en minder handmatige inspanning beheren, omdat de gegevensverzameling, aggregatie en transformatie al zijn voltooid. De overstap naar geavanceerde planningssystemen is om verschillende redenen essentieel voor het optimaliseren van resources.

Spreadsheets hebben ook een schaalprobleem. Hoe groter het bedrijf groeit, hoe groter het aantal spreadsheets, werkmappen en formules wordt. Het resultaat is een strak verweven en rigide geheel van onderlinge afhankelijkheden die log en inefficiënt worden. Gebruikers zullen moeite hebben met het omgaan met de toegenomen belasting en complexiteit, met trage verwerkingstijden en het onvermogen om grote datasets te beheren, en zullen te maken krijgen met uitdagingen bij het samenwerken tussen teams en afdelingen.

Aan de andere kant zijn geavanceerde planningssystemen voor voorraadoptimalisatie, vraagplanning en voorraadbeheer schaalbaar, ontworpen om met het bedrijf mee te groeien en zich aan te passen aan de veranderende behoeften. Deze schaalbaarheid zorgt ervoor dat bedrijven hun voorraad en prognoses effectief kunnen blijven beheren, ongeacht de omvang of complexiteit van hun activiteiten. Door over te stappen op systemen als Smart IP&O kunnen bedrijven niet alleen de nauwkeurigheid van hun voorraadbeheer en prognoses verbeteren, maar ook een concurrentievoordeel op de markt verwerven door beter te kunnen reageren op veranderingen in de vraag en efficiënter te kunnen opereren.

Voordelen van inspringen: Een elektriciteitsbedrijf had moeite om de beschikbaarheid van serviceonderdelen op peil te houden zonder een overschot aan voorraden te creëren voor meer dan 250.000 onderdelen in een divers netwerk van energieopwekkings- en distributiefaciliteiten. Het verving hun twintig jaar oude planningsproces, dat intensief gebruik maakte van spreadsheets, met Smart IP&O en een realtime integratie met hun EAM-systeem. Vóór Smart konden ze de Min/Max- en Veiligheidsvoorraadniveaus slechts zelden wijzigen. Als ze dat deden, was dat vrijwel altijd omdat er een probleem was opgetreden dat aanleiding gaf tot de beoordeling. De methoden die werden gebruikt om de kousparameters te wijzigen, waren sterk afhankelijk van het onderbuikgevoel en de gemiddelden van het historische gebruik. Het hulpprogramma maakte gebruik van de wat-als-scenario's van Smart om digitale tweelingen van alternatief voorraadbeleid te creëren en simuleerde hoe elk scenario zou presteren op belangrijke prestatie-indicatoren zoals voorraadwaarde, serviceniveaus, opvullingspercentages en tekortkosten. De software identificeerde gerichte Min/Max-verhogingen en -verlagingen die in hun EAM-systeem werden geïmplementeerd, waardoor de aanvulling van hun reserveonderdelen optimaal werd gestimuleerd. Het resultaat: een aanzienlijke voorraadreductie van $9 miljoen, waardoor contant geld en waardevolle magazijnruimte vrijkwamen, terwijl de beoogde serviceniveaus van 99%+ behouden bleven.

Prognosenauwkeurigheid beheren: Voorspellingsfouten zijn een onvermijdelijk onderdeel van voorraadbeheer, maar de meeste bedrijven houden dit niet bij. Zoals Peter Drucker zei: “Je kunt niet verbeteren wat je niet meet.” Een mondiaal hightech productiebedrijf dat een op spreadsheets gebaseerd voorspellingsproces gebruikte, moest handmatig zijn basisvoorspellingen opstellen en de nauwkeurigheid van de prognoses rapporteren. Gezien de werkdruk en de geïsoleerde processen van de planners werkten ze hun rapporten niet vaak bij, en als ze dat wel deden, moesten de resultaten handmatig worden gedistribueerd. Het bedrijf beschikte niet over een manier om te weten hoe nauwkeurig een bepaalde voorspelling was en kon de werkelijke fouten niet met enig vertrouwen per groep of onderdeel vermelden. Ze wisten ook niet of hun voorspellingen beter presteerden dan een controlemethode. Nadat Smart IP&O live ging, automatiseerde de module Demand Planning dit voor hen. Smart Demand Planner voorspelt nu automatisch de vraag elke planningscyclus opnieuw met behulp van ML-methoden en slaat nauwkeurigheidsrapporten op voor elke Part X-locatie. Alle aanpassingen die op de prognoses worden toegepast, kunnen nu automatisch worden vergeleken met de basislijn om de toegevoegde waarde van de prognose te meten – dwz of de extra inspanning om die wijzigingen door te voeren de nauwkeurigheid heeft verbeterd. Nu de mogelijkheid bestaat om de statistische basisprognoses te automatiseren en nauwkeurigheidsrapporten te produceren, beschikt dit bedrijf over een solide basis om het voorspellingsproces en de daaruit voortvloeiende voorspellingsnauwkeurigheid te verbeteren.

Doe het goed en houd het goed:  Een andere klant in de aftermarket-onderdelensector gebruikt de prognoseoplossingen van Smart sinds 2005 – bijna 20 jaar! Ze werden geconfronteerd met uitdagingen bij het voorspellen van de vraag naar onderdelen die met tussenpozen zouden worden verkocht ter ondersteuning van hun auto-aftermarket-activiteiten. Door hun op spreadsheets gebaseerde aanpak en handmatige uploads naar SAP te vervangen door statistische prognoses van de vraag en de veiligheidsvoorraad van SmartForecasts, konden ze het aantal backorders en omzetverlies aanzienlijk terugdringen, waarbij de opvullingspercentages binnen slechts drie maanden verbeterden van 93% naar 96%. De sleutel tot hun succes was het gebruik van Smart's gepatenteerde methode voor het voorspellen van de intermitterende vraag. De “Smart-Willemain” bootstrap-methode genereerde nauwkeurige schattingen van de cumulatieve vraag gedurende de doorlooptijd, waardoor een betere zichtbaarheid van de mogelijke vraag werd verzekerd.

Prognoses koppelen aan het voorraadplan: Geavanceerde planningssystemen ondersteunen op prognoses gebaseerd voorraadbeheer, wat een proactieve aanpak is die vertrouwt op vraagprognoses en simulaties om mogelijke uitkomsten en de bijbehorende kansen te voorspellen. Deze gegevens worden gebruikt om de optimale voorraadniveaus te bepalen. Op scenario's gebaseerde of probabilistische prognoses staan in contrast met de meer reactieve aard van op spreadsheets gebaseerde methoden. Een oude klant in de stoffensector, die voorheen te maken kreeg met overvoorraden en voorraadtekorten als gevolg van de intermitterende vraag naar duizenden SKU's. Ze konden op geen enkele manier weten wat de risico's van hun stock-out waren en konden dus niet proactief het beleid aanpassen om de risico's te beperken, anders dan het maken van zeer ruwe aannames die de neiging hadden om grove overvoorraden te hebben. Ze adopteerden de software voor vraag- en voorraadplanning van Smart Software om simulaties van de vraag te genereren die de optimale minimale voorraadwaarden en bestelhoeveelheden identificeerden, waardoor de productbeschikbaarheid voor onmiddellijke verzending behouden bleef, wat de voordelen van een op prognoses gebaseerde benadering van voorraadbeheer benadrukte.

Betere samenwerking:  Het delen van prognoses met belangrijke leveranciers helpt de levering te garanderen. Kratos Space, onderdeel van Kratos Defense & Security Solutions, Inc., maakte gebruik van slimme voorspellingen om hun contractfabrikanten beter inzicht te geven in de toekomstige vraag. Ze gebruikten de prognoses om toezeggingen te doen over toekomstige aankopen, waardoor de CM de materiaalkosten en doorlooptijden voor engineered-to-order-systemen kon verlagen. Deze samenwerking laat zien hoe geavanceerde voorspellingstechnieken kunnen leiden tot aanzienlijke samenwerking in de supply chain die voor beide partijen efficiëntie en kostenbesparingen oplevert.

 

Leren van voorraadmodellen

In deze videoblog onderzoeken we de integrale rol die voorraadmodellen spelen bij het vormgeven van de besluitvormingsprocessen van professionals in verschillende sectoren. Deze modellen, of het nu tastbare computersimulaties zijn of immateriële mentale constructies, dienen als cruciale hulpmiddelen bij het beheersen van de complexiteit van moderne zakelijke omgevingen. De discussie begint met een overzicht van hoe deze modellen worden gebruikt om resultaten te voorspellen en activiteiten te stroomlijnen, waarbij de relevantie ervan in een voortdurend evoluerend marktlandschap wordt benadrukt.

De discussie onderzoekt verder hoe verschillende modellen strategische besluitvormingsprocessen duidelijk beïnvloeden. De mentale modellen die professionals door ervaring ontwikkelen, vormen bijvoorbeeld vaak een leidraad voor de eerste reacties op operationele uitdagingen. Deze modellen zijn subjectief en opgebouwd op basis van persoonlijke inzichten en ervaringen uit het verleden met vergelijkbare situaties, waardoor snelle, intuïtieve besluitvorming mogelijk is. Aan de andere kant bieden computergebaseerde modellen een objectiever raamwerk. Ze gebruiken historische gegevens en algoritmische berekeningen om toekomstige scenario's te voorspellen en bieden zo een kwantitatieve basis voor beslissingen waarbij rekening moet worden gehouden met meerdere variabelen en mogelijke uitkomsten. In dit gedeelte worden specifieke voorbeelden belicht, zoals de impact van het aanpassen van bestelhoeveelheden op voorraadkosten en bestelfrequentie of de effecten van fluctuerende doorlooptijden op serviceniveaus en klanttevredenheid.

Concluderend: terwijl mentale modellen een raamwerk bieden dat is gebaseerd op ervaring en intuïtie, bieden computermodellen een gedetailleerder en getalsmatig perspectief. Het combineren van beide typen modellen zorgt voor een robuuster besluitvormingsproces, waarbij theoretische kennis in evenwicht wordt gebracht met praktische ervaring. Deze aanpak vergroot het inzicht in de voorraaddynamiek en geeft professionals de tools in handen om zich effectief aan veranderingen aan te passen, waardoor duurzaamheid en concurrentievermogen op hun respectieve vakgebieden worden gewaarborgd.

 

 

De methoden voor voorspelling

Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd.

Functies zoals het voorspellen van meerdere artikelen als groep, het rekening houden met promotiegestuurde vraag en het omgaan met intermitterende vraagpatronen zijn essentiële mogelijkheden voor bedrijven die te maken hebben met uiteenlopende productportfolio's en dynamische marktomstandigheden. Een juiste implementatie van deze toepassingen geeft bedrijven de beschikking over veelzijdige prognosetools, die aanzienlijk bijdragen aan geïnformeerde besluitvorming en operationele efficiëntie.

Extrapolatieve modellen

Onze oplossingen voor vraagvoorspelling ondersteunen een verscheidenheid aan voorspellingsbenaderingen, waaronder extrapolatieve of op afvlakking gebaseerde voorspellingsmodellen, zoals exponentiële afvlakking en voortschrijdende gemiddelden. De filosofie achter deze modellen is eenvoudig: ze proberen zich herhalende patronen in de historische gegevens te detecteren, kwantificeren en in de toekomst te projecteren.

  Er zijn twee soorten patronen die in de historische gegevens kunnen worden aangetroffen:

  • Trend
  • Seizoensgebondenheid

Deze patronen worden in de volgende afbeelding geïllustreerd, samen met willekeurige gegevens.

De methoden voor voorspelling

 

Ter illustratie van trend-, seizoens- en willekeurige tijdreeksgegevens

Als het patroon een trend is, schatten extrapolatieve modellen zoals dubbele exponentiële afvlakking en lineair voortschrijdend gemiddelde het tempo van de stijging of daling van het niveau van de variabele en projecteren dat tempo naar de toekomst.

Als het patroon seizoensgebonden is, schatten modellen zoals Winters en drievoudige exponentiële afvlakking seizoensvermenigvuldigers of seizoensgebonden optellingsfactoren en passen deze vervolgens toe op projecties van het niet-seizoensgebonden deel van de gegevens.

Heel vaak, vooral bij gegevens over detailhandelsverkopen, zijn zowel trend- als seizoenspatronen betrokken. Als deze patronen stabiel zijn, kunnen ze worden benut om zeer nauwkeurige voorspellingen te doen.

Soms zijn er echter geen duidelijke patronen, zodat de plots van de gegevens op willekeurige ruis lijken. Soms zijn patronen duidelijk zichtbaar, maar ze veranderen in de loop van de tijd en er kan niet op worden vertrouwd dat ze zich herhalen. In deze gevallen proberen de extrapolatieve modellen geen patronen te kwantificeren en te projecteren. In plaats daarvan proberen ze de ruis te middelen en goede schattingen te maken van het midden van de verdeling van gegevenswaarden. Deze typische waarden worden dan de voorspellingen. Wanneer gebruikers een historisch plot met veel ups en downs zien, maken ze zich soms zorgen omdat de voorspelling deze ups en downs niet repliceert. Normaal gesproken hoeft dit geen reden tot bezorgdheid te zijn. Dit gebeurt wanneer de historische patronen niet sterk genoeg zijn om het gebruik van een voorspellingsmethode te rechtvaardigen die het patroon repliceert. U wilt er zeker van zijn dat uw prognoses niet lijden onder het “wiebeleffect” dat hierin wordt beschreven blogpost.

Het verleden als voorspeller van de toekomst

De belangrijkste aanname die inherent is aan extrapolatieve modellen is dat het verleden een goede leidraad is voor de toekomst. Deze veronderstelling kan echter mislukken. Sommige historische gegevens kunnen verouderd zijn. De gegevens kunnen bijvoorbeeld een bedrijfsomgeving beschrijven die niet meer bestaat. Of de wereld die het model vertegenwoordigt, kan binnenkort veranderen, waardoor alle gegevens overbodig worden. Vanwege dergelijke complicerende factoren zijn de risico's van extrapolatieve voorspellingen kleiner als er slechts korte tijd in de toekomst wordt voorspeld.

Extrapolatieve modellen hebben het praktische voordeel dat ze goedkoop zijn en gemakkelijk te bouwen, te onderhouden en te gebruiken. Ze vereisen alleen nauwkeurige registraties van waarden uit het verleden van de variabelen die u moet voorspellen. Naarmate de tijd verstrijkt, voegt u eenvoudigweg de nieuwste gegevenspunten toe aan de tijdreeks en maakt u een nieuwe voorspelling. De hieronder beschreven causale modellen vereisen daarentegen meer denkwerk en meer gegevens. De eenvoud van extrapolatieve modellen wordt het meest op prijs gesteld als u met een enorm voorspellingsprobleem kampt, zoals het maken van nachtelijke prognoses van de vraag naar alle 30.000 artikelen die in een magazijn op voorraad zijn.

Oordelende aanpassingen

Extrapolatieve modellen kunnen met Demand Planner volledig automatisch worden uitgevoerd, zonder dat tussenkomst vereist is. Causale modellen vereisen inhoudelijk oordeel voor een verstandige selectie van onafhankelijke variabelen. Beide soorten statistische modellen kunnen echter worden verbeterd door oordelende aanpassingen. Beiden kunnen profiteren van uw inzichten.

Zowel causale als extrapolatieve modellen zijn gebaseerd op historische gegevens. Het is echter mogelijk dat u over aanvullende informatie beschikt die niet wordt weerspiegeld in de cijfers in het historische record. U weet bijvoorbeeld misschien dat de concurrentieomstandigheden binnenkort zullen veranderen, misschien als gevolg van prijskortingen of trends in de sector, of de opkomst van nieuwe concurrenten, of de aankondiging van een nieuwe generatie van uw eigen producten. Als deze gebeurtenissen plaatsvinden tijdens de periode waarvoor u voorspellingen doet, kunnen ze de nauwkeurigheid van puur statistische voorspellingen aantasten. Met de grafische aanpassingsfunctie van Smart Demand Planner kunt u deze extra factoren in uw prognoses opnemen via het proces van grafische aanpassing op het scherm.

Houd er rekening mee dat het toepassen van gebruikersaanpassingen op de prognose een tweesnijdend zwaard is. Als het op de juiste manier wordt gebruikt, kan het de nauwkeurigheid van voorspellingen verbeteren door gebruik te maken van een rijkere reeks informatie. Als het promiscue wordt gebruikt, kan het extra ruis aan het proces toevoegen en de nauwkeurigheid verminderen. Wij raden u aan spaarzaam om te gaan met oordelende aanpassingen, maar nooit blindelings de voorspellingen van een puur statistische voorspellingsmethode te aanvaarden. Het is ook erg belangrijk om de verwachte toegevoegde waarde te meten. Dat wil zeggen de waarde die door elke incrementele stap aan het prognoseproces wordt toegevoegd. Als u bijvoorbeeld aanpassingen toepast op basis van bedrijfskennis, is het belangrijk om te meten of deze aanpassingen waarde toevoegen door de nauwkeurigheid van de prognoses te verbeteren. Smart Demand Planner ondersteunt het meten van de verwachte toegevoegde waarde door elke overwogen prognose bij te houden en de nauwkeurigheidsrapporten van de prognoses te automatiseren. U kunt statistische prognoses selecteren, de fouten ervan meten en deze vergelijken met de overschreven voorspellingen. Door dit te doen informeert u het prognoseproces, zodat in de toekomst betere beslissingen kunnen worden genomen. 

Voorspellingen op meerdere niveaus

Een andere veel voorkomende situatie betreft prognoses op meerdere niveaus, waarbij er meerdere items als groep worden voorspeld of er zelfs meerdere groepen kunnen zijn, waarbij elke groep meerdere items bevat. We zullen dit soort prognoses over het algemeen Multilevel Forecasting noemen. Het belangrijkste voorbeeld is de productlijnprognose, waarbij elk artikel lid is van een artikelfamilie en het totaal van alle artikelen in de familie een betekenisvolle hoeveelheid is.

U heeft bijvoorbeeld, zoals in de volgende afbeelding, mogelijk een lijn tractoren en u wilt verkoopprognoses voor elk type tractor en voor de gehele tractorlijn.

De methoden voor het voorspellen 2

Ter illustratie van productprognoses op meerdere niveaus

 Smart Demand Planner biedt roll-up/roll-down-prognoses. Deze functie is cruciaal voor het verkrijgen van uitgebreide prognoses van alle productartikelen en hun groepstotaal. De Roll Down/Roll Up-methode binnen deze functie biedt twee opties voor het verkrijgen van deze prognoses:

Samenvatten (Bottom-Up): Deze optie voorspelt in eerste instantie elk item afzonderlijk en voegt vervolgens de prognoses op itemniveau samen om een prognose op familieniveau te genereren.

Roll-down (van boven naar beneden): Als alternatief begint de roll-down-optie met het vormen van het historische totaal op familieniveau, voorspelt het en wijst het totaal vervolgens proportioneel toe tot op itemniveau.

Wanneer u Roll Down/Roll Up gebruikt, heeft u toegang tot het volledige scala aan prognosemethoden van Smart Demand Planner, zowel op artikel- als op familieniveau. Dit zorgt voor flexibiliteit en nauwkeurigheid bij het voorspellen, waarbij wordt voldaan aan de specifieke behoeften van uw bedrijf op verschillende hiërarchische niveaus.

Onderzoek naar prognoses heeft geen duidelijke voorwaarden geschapen die de voorkeur geven aan een top-down- of bottom-up-benadering van prognoses. De bottom-up benadering lijkt echter de voorkeur te hebben als de geschiedenis van items stabiel is en de nadruk ligt op de trends en seizoenspatronen van de individuele items. Top-down is normaal gesproken een betere keuze als sommige items een zeer luidruchtige geschiedenis hebben of als de nadruk ligt op prognoses op groepsniveau. Omdat Smart Demand Planner het snel en gemakkelijk maakt om zowel een bottom-up als een top-down benadering te proberen, moet u beide methoden proberen en de resultaten vergelijken. U kunt de functie 'Hold back on Current' van Smart Demand Planner in 'Prognose vs. Actueel' gebruiken om beide benaderingen op uw eigen gegevens te testen en te zien welke een nauwkeurigere voorspelling voor uw bedrijf oplevert. 

 

Op zoek naar problemen met uw voorraadgegevens

In deze videoblog wordt een cruciaal aspect van voorraadbeheer in de schijnwerpers gezet: de analyse en interpretatie van voorraadgegevens. De focus ligt specifiek op een dataset van een openbaar vervoersbedrijf met details over reserveonderdelen voor bussen. Met meer dan 13.700 geregistreerde onderdelen bieden de gegevens een uitstekende gelegenheid om in de complexiteit van voorraadoperaties te duiken en verbeterpunten te identificeren.

Het begrijpen en aanpakken van afwijkingen in inventarisgegevens is om verschillende redenen belangrijk. Het zorgt niet alleen voor een efficiënte werking van voorraadsystemen, maar minimaliseert ook de kosten en verbetert de servicekwaliteit. Deze videoblog onderzoekt vier fundamentele regels van voorraadbeheer en laat aan de hand van praktijkgegevens zien hoe afwijkingen van deze regels onderliggende problemen kunnen signaleren. Door aspecten als artikelkosten, doorlooptijden, voorhanden en in bestelling zijnde eenheden en de parameters die het aanvulbeleid sturen te onderzoeken, biedt de video een uitgebreid overzicht van de potentiële uitdagingen en inefficiënties die op de loer liggen in voorraadgegevens. 

We benadrukken het belang van regelmatige analyse van voorraadgegevens en hoe een dergelijke analyse kan dienen als een krachtig hulpmiddel voor voorraadbeheerders, waardoor ze problemen kunnen detecteren en corrigeren voordat ze escaleren. Het vertrouwen op verouderde benaderingen kan tot onnauwkeurigheden leiden, resulterend in overtollige voorraden of onvervulde klantverwachtingen, wat op zijn beurt aanzienlijke financiële gevolgen en inefficiënties in de bedrijfsvoering kan veroorzaken.

Door een gedetailleerd onderzoek van de dataset van het openbaar vervoersbedrijf brengt de videoblog een duidelijke boodschap over: proactieve beoordeling van inventarisgegevens is essentieel voor het handhaven van een optimale voorraadoperatie, om ervoor te zorgen dat onderdelen beschikbaar zijn wanneer dat nodig is en om onnodige uitgaven te vermijden.

Door gebruik te maken van geavanceerde voorspellende analysetools zoals Smart Inventory Planning en Optimization kunt u uw voorraadgegevens onder controle houden. Smart IP&O geeft u op elk moment beslissende vraag- en voorraadinzichten in veranderende vraagpatronen voor reserveonderdelen, waardoor uw organisatie beschikt over de informatie die nodig is voor strategische besluitvorming.