De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Om de efficiëntievoordelen van prognoses te benutten, hebt u de meest nauwkeurige prognoses nodig: prognoses die zijn gebaseerd op de meest geschikte historische gegevens. De meeste discussies over dit probleem richten zich meestal op de voordelen van het gebruik van vraag versus verzendgeschiedenis - en ik zal hier later op ingaan. Maar laten we het eerst hebben over het gebruik van netto- versus brutogegevens.

Netto versus bruto geschiedenis

Veel planners zijn geneigd om netto-omzetgegevens te gebruiken om hun prognoses te maken. Systemen die verkopen volgen, registreren transacties wanneer ze plaatsvinden en aggregeren de resultaten in wekelijkse of maandelijkse periodieke totalen. In sommige gevallen worden geretourneerde aankopen in verkooprecords als negatieve verkopen verantwoord en wordt een nettototaal berekend. Deze nettocijfers, die vaak echte verkooppatronen maskeren, worden ingevoerd in het prognosesysteem. De gebruikte historische gegevens geven eigenlijk een verkeerd beeld van wat de klant wilde en wanneer hij het wilde. Dit wordt meegenomen in de prognose, met minder dan optimale resultaten.

Stel dat uw verkoopgegevens worden samengevoegd tot maandelijkse totalen. Als er gebruik wordt gemaakt van netto maandcijfers, en de retouren vinden plaats in dezelfde maand als waarin ze zijn gekocht, geen probleem. De netto-activiteit voor de maand weerspiegelt de werkelijke vraag. Maar wat als het product drie of vier maanden na aankoop wordt geretourneerd, zoals vaak gebeurt? De nettocijfers zijn een onderschatting van de interesse in het product voor de maand waarin het rendement wordt geteld, en (het lijkt erop) een overschatting van de vraag voor de maand van de eerste verkoop. Op deze manier de productvraag op het verkeerde moment weergeven, verstoort het vermogen van het voorspellingssysteem om het patroon (of het ontbreken daarvan) in de gegevens correct te identificeren.

Aangezien u bestellingen uitvoert zoals u ze ontvangt, zult u de verzending nauwelijks weigeren omdat u denkt dat ze het product binnen een paar maanden kunnen retourneren. Klanten zouden daar niet voor staan. Dus u wilt natuurlijk weten dat een dergelijke vraag waarschijnlijk zal optreden. Als de bestellingen gaan komen, heb je voorraad nodig in je voorraad om aan de vraag te voldoen, ongeacht latere retouren. Het gebruik van nettocijfers is in deze situaties niet de beste praktijk.

In de meeste gevallen moeten gegevens die worden gebruikt bij het opstellen van prognoses gebaseerd zijn op brutocijfers. Rendementen kunnen worden voorspeld als een afzonderlijke variabele en worden gebruikt als een bron van inkomend aanbod. Dit zal resulteren in minder onnodige bestellingen van nieuwe voorraad. Uiteindelijk legt deze aanpak de ware patronen in de gegevens beter vast: de kern van prognoses.

Verzend- versus vraaggegevens

Een tweede belangrijk onderscheid met betrekking tot historische gegevens lijkt contra-intuïtief. Voorspellers worden bijna altijd aangemoedigd om vraaggegevens te gebruiken, omdat wordt aangenomen dat deze beter weergeven wat de klant wilde en wanneer. Wanneer u echter de keuze heeft, kan het soms slimmer zijn om verzendgegevens te gebruiken.

Een leidend principe is om rekening te houden met de nauwkeurigheid van de gegevens. In de meeste bedrijven geven de verzendgegevens precies weer wat er is verzonden, terwijl de vraaggegevens vaak worden geplaagd door onnauwkeurigheden. Hier zijn een paar voorbeelden:

Klanten kunnen bijvoorbeeld weten dat u hun bestelling niet kunt uitvoeren. In dat geval kunnen ze afzien van het plaatsen van de bestelling en wachten totdat ze denken dat je voorraad bij de hand hebt om aan hun behoeften te voldoen. Aan de andere kant kunnen angstige klanten meerdere elektronische bestellingen indienen, bang dat een miscommunicatie zou kunnen voorkomen dat een essentiële bestelling wordt verwerkt. Als ze er zeker van zijn dat één bestelling is geaccepteerd, kunnen ze de extra bestellingen annuleren. Dan is er het geval van een klant die in het verleden stockouts bij u heeft gehad. Ze kunnen de omvang van hun bestellingen vergroten om de kans te maximaliseren dat de voorraad aan hen wordt toegewezen.

Als dergelijke praktijken uw bestelgeschiedenis teisteren, kan het verstandiger zijn om verzendgegevens te gebruiken. Vervolgens kunt u de functie 'geschiedenis aanpassen' van SmartForecasts gebruiken om de verzendgegevens nauwkeurig af te stemmen, zodat deze beter aansluiten bij de vraag. U kunt zeker hetzelfde doen met onnauwkeurige vraaggegevens, maar vaak zal dit veel meer inspanning vergen dan alleen te corrigeren voor voor de hand liggende gevallen waarin de zendingen de ene maand laag zijn en de andere maand hoog vanwege een voorraad-out situatie.

Voordat u een beslissing neemt over het gebruik van verzend- of vraaggegevens, is het belangrijk om te begrijpen hoe bestellingen en retouren in uw systeem worden verwerkt. Praat met uw klantenservicemedewerkers en vraag hen hoe zij deze situaties kunnen verklaren. Geloof het woord van uw IT-afdeling niet. Oefen uw oordeel om de beste resultaten te krijgen.

Het maken van de juiste gegevenskeuzes zal een grote bijdrage leveren aan het bereiken van waardevolle efficiëntieverbeteringen in de toeleveringsketen. Neem de tijd om te lezen De post van Michael Gilliland over dit onderwerp op de blog van het Institute of Business Forecasting and Planning, op demand-planning.com.

Gregory Hartunian is voorzitter van Smart Software en lid van de raad van bestuur. Daarvoor bekleedde hij de functie van Vice President of Sales.

Laat een reactie achter

gerelateerde berichten

Wat te doen als een statistische prognose geen steek houdt

Wat te doen als een statistische prognose geen steek houdt

Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten.

recente berichten

  • Vijftien vragen die laten zien hoe prognoses in uw bedrijf worden berekendVijftien vragen die laten zien hoe prognoses in uw bedrijf worden berekend
    In een recent LinkedIn-bericht heb ik vier vragen gedetailleerd beschreven die, wanneer ze worden beantwoord, zullen onthullen hoe prognoses in uw bedrijf worden gebruikt. In dit artikel hebben we vragen opgesomd die u kunt stellen om te onthullen hoe prognoses worden gemaakt. […]
  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]