El Blog de Smart

Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Para aprovechar los beneficios de eficiencia de la previsión, necesita las previsiones más precisas: previsiones basadas en los datos históricos más apropiados. La mayoría de las discusiones sobre este tema tienden a centrarse en los méritos de usar la demanda frente al historial de envíos, y comentaré esto más adelante. Pero primero, hablemos sobre el uso de datos netos frente a datos brutos.

Historial neto vs. bruto

Muchos planificadores se inclinan por usar datos de ventas netas para crear sus pronósticos. Los sistemas que rastrean las ventas capturan las transacciones a medida que ocurren y agregan los resultados en totales periódicos semanales o mensuales. En algunos casos, los registros de ventas contabilizan las compras devueltas como ventas negativas y calculan un total neto. Estas cifras netas, que a menudo enmascaran patrones de ventas reales, se introducen en el sistema de previsión. Los datos históricos utilizados en realidad presentan una falsa sensación de lo que quería el cliente y cuándo lo quería. Esto se trasladará al pronóstico, con resultados menos que óptimos.

Suponga que sus datos de ventas se agregan en totales mensuales. Si se utilizan cifras netas mensuales, y las devoluciones se producen en el mismo mes que se compran, no hay problema. La actividad neta del mes refleja la demanda real. Pero, ¿y si el producto se devuelve tres o cuatro meses después de haberlo comprado, como suele ocurrir? Las cifras netas subestiman el interés en el producto para el mes en que se cuenta la devolución y (al parecer) sobrestiman la demanda para el mes de la venta inicial. Reflejar la demanda del producto en el momento equivocado de esta manera interfiere con la capacidad del sistema de pronóstico para identificar adecuadamente el patrón (o la falta del mismo) en los datos.

Dado que completa los pedidos a medida que los recibe, difícilmente se negará a realizar el envío porque cree que podrían devolver el producto en unos pocos meses. Los clientes no soportarían eso. Entonces, por supuesto, desea saber que es probable que ocurra tal demanda. Si van a llegar los pedidos, necesitas stock en tu inventario para satisfacer la demanda, independientemente de las devoluciones posteriores. El uso de cifras netas no es la mejor práctica en estas situaciones.

En la mayoría de los casos, los datos utilizados para preparar pronósticos deben basarse en cifras brutas. Los rendimientos pueden pronosticarse como una variable separada y utilizarse como fuente de suministro entrante. Esto dará como resultado menos pedidos innecesarios de nuevo inventario. En última instancia, este enfoque captura mejor los verdaderos patrones en los datos: el corazón de la previsión.

Datos de envío frente a demanda

Una segunda distinción importante con respecto a los datos históricos puede parecer contraria a la intuición. Casi siempre se alienta a los pronosticadores a usar datos de demanda porque se supone que reflejan mejor lo que el cliente quería y cuándo. Sin embargo, cuando tiene la opción, a veces puede ser más inteligente utilizar los datos de envío.

Un principio rector es considerar la precisión de los datos. En la mayoría de las empresas, los datos de envío reflejan exactamente lo que se envió, mientras que los datos de demanda a menudo están plagados de imprecisiones. Aquí están algunos ejemplos:

Los clientes pueden saber, por ejemplo, que no podrá completar su pedido. En ese caso, es posible que se abstengan de realizar el pedido y esperen hasta que crean que tiene existencias disponibles para satisfacer sus necesidades. Por otro lado, los clientes ansiosos pueden presentar múltiples pedidos electrónicos, preocupados de que alguna falta de comunicación pueda impedir que se procese un pedido vital. Cuando estén seguros de que se ha aceptado un pedido, podrán cancelar los pedidos adicionales. Luego está el caso de un cliente que ha experimentado desabastecimientos contigo en el pasado. Pueden aumentar el tamaño de sus pedidos para maximizar la posibilidad de que se les asigne inventario.

Si tales prácticas plagan su historial de pedidos, puede ser más prudente utilizar los datos de envío. A continuación, puede utilizar la función "ajustar historial" de SmartForecasts para afinar los datos de envío, de modo que refleje mejor la demanda. Sin duda, puede hacer lo mismo con los datos de demanda inexactos, pero a menudo esto requerirá mucho más esfuerzo que simplemente corregir los casos obvios en los que los envíos son bajos un mes y altos al siguiente debido a una situación de falta de existencias.

Antes de tomar una decisión sobre si usar datos de envío o de demanda, es importante comprender cómo se contabilizan los pedidos y las devoluciones en su sistema. Hable con sus representantes de servicio al cliente y pregúnteles cómo darían cuenta de estas situaciones. No confíe en la palabra de su departamento de TI. Ejerza su juicio para obtener los mejores resultados.

Tomar las decisiones de datos correctas contribuirá en gran medida a lograr valiosas eficiencias en la cadena de suministro. Tómese el tiempo para leer Publicación de Michael Gilliland sobre este tema en el blog del Institute of Business Forecasting and Planning, en demand-planning.com.

Gregory Hartunian se desempeña como presidente de Smart Software y como miembro de la junta directiva. Anteriormente ocupó el cargo de Vicepresidente de Ventas.

Deja un comentario

Artículos Relacionados

¿Confundido acerca de la IA y el aprendizaje automático?

¿Confundido acerca de la IA y el aprendizaje automático?

¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

Cómo pronosticar los requisitos de inventario

Cómo pronosticar los requisitos de inventario

La previsión de las necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de posible demanda futura. Los métodos tradicionales suelen basarse en curvas de demanda en forma de campana, pero esto no siempre es exacto. En este artículo profundizamos en las complejidades de esta práctica, especialmente cuando se trata de una demanda intermitente.

Seis mejores prácticas de planificación de la demanda en las que debería pensar dos veces

Seis mejores prácticas de planificación de la demanda en las que debería pensar dos veces

Cada campo, incluido el pronóstico, acumula sabiduría popular que eventualmente comienza a disfrazarse de “mejores prácticas”. Estas mejores prácticas suelen ser acertadas, al menos en parte, pero a menudo carecen de contexto y pueden no ser apropiadas para determinados clientes, industrias o situaciones comerciales. A menudo hay un problema, un “Sí, pero”. Esta nota trata sobre seis preceptos de pronóstico generalmente verdaderos que, sin embargo, tienen sus salvedades.

Mensajes recientes

  • What is Inventory Control Planning Management Optimization DictionaryWhat is Inventory Planning? A Brief Dictionary of Inventory-Related Terms
    People involved in the supply chain are likely to have questions about various inventory terms and methods used in their jobs. This note may help by explaining these terms and showing how they relate. […]
  • artificial intelligence ai and machine learning inventory management¿Confundido acerca de la IA y el aprendizaje automático?
    ¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil. […]
  • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
    En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]
  • Balance,Concept,Con,Chrome,Balls,software de optimización de inventarioCómo pronosticar los requisitos de inventario
    La previsión de las necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de posible demanda futura. Los métodos tradicionales suelen basarse en curvas de demanda en forma de campana, pero esto no siempre es exacto. En este artículo profundizamos en las complejidades de esta práctica, especialmente cuando se trata de una demanda intermitente. […]
  • Hermanos gemelos de planificación de la demanda con herramientas de previsiónSeis mejores prácticas de planificación de la demanda en las que debería pensar dos veces
    Cada campo, incluido el pronóstico, acumula sabiduría popular que eventualmente comienza a disfrazarse de “mejores prácticas”. Estas mejores prácticas suelen ser acertadas, al menos en parte, pero a menudo carecen de contexto y pueden no ser apropiadas para determinados clientes, industrias o situaciones comerciales. A menudo hay un problema, un “Sí, pero”. Esta nota trata sobre seis preceptos de pronóstico generalmente verdaderos que, sin embargo, tienen sus salvedades. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]
    • 5 pasos para mejorar el impacto financiero de la planificación de repuestos5 pasos para mejorar el impacto financiero de la planificación de repuestos
      En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]
    • Estrategias de resultados para el software de planificación de piezas de repuestoEstrategias de resultados para la planificación de piezas de repuesto
      La gestión de piezas de repuesto presenta numerosos desafíos, como averías inesperadas, horarios cambiantes y patrones de demanda inconsistentes. Los métodos de pronóstico tradicionales y los enfoques manuales son ineficaces para hacer frente a estas complejidades. Para superar estos desafíos, este blog describe estrategias clave que priorizan los niveles de servicio, utilizan métodos probabilísticos para calcular los puntos de pedido, ajustan periódicamente las políticas de almacenamiento e implementan un proceso de planificación dedicado para evitar un inventario excesivo. Explore estas estrategias para optimizar el inventario de repuestos y mejorar la eficiencia operativa. […]
    • ingeniero técnico profesional que planifica piezas de repuesto en la fábrica de fabricación industrial,Prepare su planificación de repuestos para golpes inesperados
      En el clima empresarial impredecible de hoy, tenemos que preocuparnos por las interrupciones en la cadena de suministro, los largos plazos de entrega, el aumento de las tasas de interés y la volatilidad de la demanda. Con todos estos desafíos, nunca ha sido más vital para las organizaciones pronosticar con precisión el uso de piezas, los niveles de existencias y optimizar las políticas de reabastecimiento, como los puntos de pedido, las existencias de seguridad y las cantidades de los pedidos. En este blog, exploraremos cómo las empresas pueden aprovechar soluciones innovadoras como la optimización de inventario y el software de pronóstico de piezas que utilizan algoritmos de aprendizaje automático, pronóstico probabilístico y análisis para mantenerse a la vanguardia y proteger sus cadenas de suministro de impactos inesperados. […]