}

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

La mayoría de los pronósticos de demanda son parciales o incompletos: proporcionan un solo número: el valor más probable de la demanda futura. Esto se llama pronóstico puntual. Por lo general, el pronóstico puntual estima el valor promedio de la demanda futura.

Mucho más útil es un pronóstico de la distribución de probabilidad completa de la demanda en cualquier momento futuro. Esto se conoce más comúnmente como pronóstico de probabilidad y es mucho más útil.

El promedio no es la respuesta

 

La única ventaja de un pronóstico puntual es su simplicidad. Si su sistema ERP también es simple, el pronóstico de puntos completa el número que necesita el sistema ERP para programar la mano de obra o comprar materias primas.

La desventaja de un pronóstico puntual es que es demasiado simple. Ignora información adicional en el historial de demanda de un artículo que puede brindarle una imagen más completa de cómo podría desarrollarse la demanda: un pronóstico de probabilidad.

Más allá del promedio: Pronóstico de probabilidad

 

Mientras que el pronóstico puntual proporciona información limitada, por ejemplo, "La demanda más probable el próximo mes es de 15 unidades", el pronóstico de probabilidad agrega información crucial, por ejemplo, "Existe una probabilidad de 20% de que la demanda supere las 28 unidades y una probabilidad de 10% de que lo haga". ser inferior a 5 unidades”.

Esta información le permite realizar la evaluación de riesgos y la planificación de contingencias. La planificación de contingencia es necesaria porque el pronóstico puntual generalmente tiene solo una pequeña posibilidad de ser correcto. Un pronóstico de probabilidad también puede decir: "La posibilidad de que la demanda sea de 15 unidades es solo 10%, aunque es el valor más probable". En otras palabras, existe una probabilidad 90% de que el pronóstico de puntos sea incorrecto. Este tipo de error no es un error en los cálculos de pronóstico: es la realidad de lidiar con la volatilidad de la demanda. Sería mejor llamarlo una "incertidumbre" que un "error".

Un gerente de operaciones puede usar la información adicional en un pronóstico de probabilidad tanto de manera informal como formal. Informalmente, incluso si un sistema ERP requiere un pronóstico de un solo número como entrada, un administrador inteligente querrá tener alguna pista sobre los riesgos asociados con ese pronóstico puntual, es decir, su margen de error. Entonces, un pronóstico de 15 ± 1 unidad es mucho más seguro que un pronóstico de 15 ± 10. La parte ± es una compresión de un pronóstico probabilístico. La figura 1 a continuación muestra el historial de demanda de un artículo (línea roja), las previsiones puntuales para los próximos 12 meses (línea verde) y sus márgenes de error (líneas cian). El pronóstico más bajo de alrededor de 3.300 unidades ocurre en junio, pero la demanda real podría ser tanto como 800 unidades más o menos.

Bonus: Aplicación a la Gestión de Inventarios

 

La gestión de inventario requiere que equilibre la disponibilidad del artículo con el costo del inventario. Resulta que conocer la distribución de probabilidad completa de la demanda durante un tiempo de espera de reabastecimiento es esencial para establecer puntos de reposición (también llamados minutos) sobre una base racional y científica. La Figura 2 muestra un pronóstico de probabilidad de la demanda total durante el plazo de entrega de reabastecimiento de 33 semanas para una determinada pieza de repuesto. Si bien la demanda de tiempo de entrega promedio es de 3 unidades, la demanda más probable es cero, y se necesita un punto de reorden de 14 para asegurar que la probabilidad de agotamiento sea de solo 1%. Una vez más, el promedio no es la respuesta.

Saber más siempre es mejor que saber menos y el pronóstico de probabilidad proporciona esa información crucial adicional. El software ha sido capaz de proporcionar un pronóstico puntual durante más de 40 años, pero el software moderno puede hacerlo mejor y proporcionar una imagen completa.

 

 

Figura 1: La línea roja muestra el historial de demanda de un bien terminado. La línea verde muestra las previsiones puntuales para los próximos 12 meses. Las líneas azules indican los márgenes de error en los pronósticos de 12 puntos.

 

 

Figura 2: Pronóstico probabilístico de la demanda de una pieza de repuesto durante un plazo de reposición de 33 semanas. La demanda más probable es cero, la demanda promedio es 3, pero se requiere un punto de pedido de 14 unidades para tener solo una probabilidad de 1% de que se agoten las existencias.

Deja un comentario

Artículos Relacionados

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

Cómo manejar pronósticos estadísticos de cero

Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero?

Mensajes recientes

  • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
    A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
  • Grupo de negocios de estilo en trajes de negocios clásicos con binoculares y telescopios reproducen diferentes métodos de pronósticoCómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico
    Este blog explica cómo funciona cada modelo de pronóstico utilizando gráficos de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro. […]
  • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
  • Qué hacer cuando un pronóstico estadístico no tiene sentidoQué hacer cuando un pronóstico estadístico no tiene sentido
    A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico. […]
  • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
      A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
    • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
      La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]