De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

We stuiten regelmatig op verwarring over het proces van het instellen van veiligheidsvoorraden. Deze blog hoopt duidelijkheid te scheppen over het probleem.

Veiligheidsvoorraad is een cruciaal onderdeel in elk systeem van voorraadbeheer. Inderdaad, sommigen inventaris software behandelt veiligheidsvoorraad als de belangrijkste beslissingsvariabele in de zoektocht om de voorraadkosten af te wegen tegen de beschikbaarheid van artikelen. Helaas is die aanpak niet de beste manier om de balans te vinden.

Realiseer u eerst dat veiligheidsvoorraad deel uitmaakt van een algemene vergelijking:

Voorraaddoel = gemiddelde doorlooptijdvraag + veiligheidsvoorraad.

De gemiddelde doorlooptijdvraag wordt gedefinieerd als de gemiddelde gevraagde eenheden vermenigvuldigd met de gemiddelde doorlooptijd voor aanvulling. Voorbeeld: Als de dagelijkse vraag gemiddeld 2 eenheden bedraagt en de gemiddelde doorlooptijd 7 dagen is, dan is de gemiddelde doorlooptijdvraag 2 x 7= 14 eenheden. Het is voldoende om 14 eenheden bij de hand te houden om aan de typische vraag te voldoen.

Maar we weten allemaal dat de vraag willekeurig is, dus voldoende voorraad aanhouden om de gemiddelde doorlooptijdvraag te dekken, nodigt uit tot stockouts. Zoals we graag zeggen, "Het gemiddelde is niet het antwoord." Het slimme antwoord is om wat toe te voegen Safety stock om willekeurige pieken in de vraag op te vangen. Maar hoeveel?

Daar zit het probleem. Als je een getal voor de veiligheidsvoorraad probeert te raden, bevind je je op glad ijs. Hoe weet je wat het "juiste" nummer is? Je denkt misschien dat je je daar geen zorgen over hoeft te maken omdat je nu een goed genoeg antwoord hebt, maar dat antwoord heeft een houdbaarheidsdatum. Doorlooptijden veranderen. Dat geldt ook voor vraagpatronen. Dat geldt ook voor de prioriteiten van het bedrijf. Dat betekent dat het goede antwoord van vandaag de blunder van morgen kan worden.

Sommige bedrijven proberen het te omzeilen met een ruwe olie vuistregel aanpak. Ze kunnen bijvoorbeeld iets zeggen als "Veiligheidsvoorraad instellen op twee weken extra gemiddelde vraag." Deze benadering is verleidelijk: er is alleen eenvoudige wiskunde voor nodig en het is duidelijk. Maar om de redenen die in de vorige paragraaf zijn genoemd, is het dwaas. Liever een goed antwoord dan een handig antwoord.

Je hebt een principiële, objectieve manier nodig om de vraag te beantwoorden die rekening houdt met de wiskunde van willekeur. Meer dan dat, je hebt een antwoord nodig dat gekoppeld is aan de key performance indicators (KPI's) van het systeem: voorraadkosten en artikelbeschikbaarheid.

Simpele logica geeft je een idee van het antwoord, maar het geeft niet het aantal dat je nodig hebt. U weet dat een grotere veiligheidsvoorraad zowel de kosten als de beschikbaarheid verhoogt, terwijl een kleinere veiligheidsvoorraad beide verlaagt. Maar zonder te weten hoeveel die statistieken zullen veranderen als u de veiligheidsvoorraad verandert, kunt u de beslissing over de veiligheidsvoorraad niet afstemmen op de intentie van het management om de balans te vinden tussen kosten en beschikbaarheid.

In plaats van blind te vliegen, kunt u teruggaan naar de keuze van veiligheidsvoorraad door eerst de juiste keuze voor voorraaddoel te vinden. Als je dat eenmaal hebt gedaan, springt de veiligheidsvoorraad tevoorschijn door een simpele aftrekking:

 Veiligheidsvoorraad = voorraaddoel - gemiddelde doorlooptijdvraag.

Manager In Pakhuis Met KlembordVaak zullen bedrijven aangeven dat ze geen veiligheidsvoorraad hebben omdat het veld voor de veiligheidsvoorraad in hun ERP-systeem leeg is. Bijna altijd wordt een veiligheidsvoorraad ingebouwd in het beoogde voorraadniveau dat ze hebben vastgesteld. Het is dus heel nuttig om de bovenstaande formule te gebruiken om "terug te halen" hoeveel veiligheidsvoorraad u in het plan aan het inbouwen bent. De sleutel is niet alleen om te weten hoeveel veiligheidsvoorraad u bij u heeft, maar ook om de link tussen uw voorraaddoel, veiligheidsvoorraden en de bijbehorende KPI's.

Stel bijvoorbeeld dat u slechts een kans van 5% kunt tolereren dat uw voorraad wordt aangevuld terwijl u wacht op aanvulling (voorraadteksten noemen dit interval de 'risicoperiode'). Software kan de vraaggeschiedenis van elk item onderzoeken en de kansen op voorraad berekenen op basis van de duizenden verschillende vraagscenario's die kunnen optreden tijdens de doorlooptijd. Dan is het juiste antwoord voor het voorraaddoel de keuze die leidt tot niet meer dan een voorraadrisico van 5%. Gegeven dat doel en de gemiddelde doorlooptijd kennende, valt de juiste waarde van de veiligheidsvoorraad er direct uit door af te trekken. Ook maak je kennis met de gemiddelde houd-, bestel- en tekortkosten.

Dat is wat we bedoelen met "terug in de veiligheidsvoorraad". Begin met de bedrijfsdoelstellingen, bepaal het juiste voorraaddoel en leid als laatste stap de veiligheidsvoorraad af. Begin niet met een gok over veiligheidsvoorraad en hoop op het beste.

Laat een reactie achter

gerelateerde berichten

Hebben uw statistische prognoses last van het wiggle-effect?

Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

Hoe om te gaan met statistische prognoses van nul

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

recente berichten

  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
  • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]