Planificación de orden probabilística vs. determinista

El Blog de Smart

Hombre con una computadora en las mejores prácticas de un almacén en la planificación de la demanda, la previsión y la optimización del inventario

Considere el problema de reponer el inventario. Para ser específicos, suponga que el artículo de inventario en cuestión es una pieza de repuesto. Tanto usted como su proveedor querrán saber cuánto ordenarán y cuándo. Y su sistema ERP puede estar insistiendo en que también le diga el secreto.

Modelo determinista de reabastecimiento

La forma más sencilla de obtener una respuesta decente a esta pregunta es asumir que el mundo es, bueno, simple. En este caso, simple significa "no aleatorio" o, en lenguaje geek, "determinista". En particular, pretende que el tamaño aleatorio y el tiempo de la demanda es realmente un goteo continuo de un tamaño fijo que viene en un intervalo fijo, por ejemplo, 2, 2, 2, 2, 2, 2... Si esto parece poco realista , es. La demanda real podría parecerse más a esto: 0, 1, 10, 0, 1, 0, 0, 0 con muchos ceros, picos ocasionales pero aleatorios.

Pero la sencillez tiene sus virtudes. Si pretende que la demanda promedio ocurre todos los días como un reloj, es fácil calcular cuándo deberá realizar su próximo pedido y cuántas unidades necesitará. Por ejemplo, suponga que su política de inventario es del tipo (Q,R), donde Q es una cantidad de pedido fija y R es un punto de pedido fijo. Cuando las existencias caen hasta el punto de reorden R o por debajo de este, pide Q unidades más. Para redondear la fantasía, suponga que el tiempo de reabastecimiento también es fijo: después de L días, esas Q nuevas unidades estarán en el estante listas para satisfacer la demanda.

Todo lo que necesita ahora para responder a sus preguntas es la demanda promedio por día D para el artículo. La lógica es así:

  1. Comienza cada ciclo de reabastecimiento con Q unidades disponibles.
  2. Usted agota ese stock en D unidades por día.
  3. Por lo tanto, alcanza el punto de pedido R después de (QR)/D días.
  4. Entonces, usted ordena cada (QR)/D días.
  5. Cada ciclo de reabastecimiento dura (QR)/D + L días, por lo que realiza un total de 365D/(Q-R+LD) pedidos por año.
  6. Siempre que el tiempo de entrega L < R/D, nunca se agotará y su inventario será lo más pequeño posible.

La figura 1 muestra el gráfico del inventario disponible frente al tiempo para el modelo determinista. En torno al software inteligente, nos referimos a este gráfico como el "diente de sierra determinista". El stock comienza en el nivel de la última cantidad de pedido Q. Después de disminuir constantemente durante el tiempo de caída (QR)/D, el nivel llega al punto de pedido R y activa un pedido de otras Q unidades. Durante el tiempo de entrega L, las existencias caen exactamente a cero, luego llega mágicamente el nuevo pedido y comienza el siguiente ciclo.

Figura 1 Modelo determinista de inventario disponible

Figura 1: Modelo determinista de inventario disponible

 

Este modelo tiene dos cosas a su favor. No requiere más que álgebra de secundaria y combina (casi) todos los factores relevantes para responder las dos preguntas relacionadas: ¿Cuándo tendremos que hacer el próximo pedido? ¿Cuántos pedidos haremos en un año?

Modelo Probabilístico de Reposición

No es sorprendente que si eliminamos parte de la fantasía del modelo determinista, obtengamos información más útil. El modelo probabilístico incorpora toda la desordenada aleatoriedad del problema del mundo real: la incertidumbre tanto en el momento como en el tamaño de la demanda, la variación en el tiempo de reabastecimiento y las consecuencias de esos dos factores: la posibilidad de que las existencias disponibles no alcancen el reabastecimiento. punto, la probabilidad de que haya un desabastecimiento, la variabilidad en el tiempo hasta el próximo pedido y el número variable de pedidos ejecutados en un año.

El modelo probabilístico funciona simulando las consecuencias de una demanda incierta y un tiempo de entrega variable. Mediante el análisis de los patrones históricos de demanda del artículo (y la exclusión de cualquier observación registrada durante un período en el que la demanda pudo haber sido fundamentalmente diferente), los métodos estadísticos avanzados crean una cantidad ilimitada de escenarios de demanda realistas. Se aplica un análisis similar a los registros de los plazos de entrega de los proveedores. La combinación de estos escenarios de oferta y demanda con las reglas operativas de cualquier política de control de inventario produce escenarios de la cantidad de piezas disponibles. De estos escenarios, podemos extraer resúmenes de los diferentes intervalos entre órdenes.

La Figura 2 muestra un ejemplo de un escenario probabilístico; la demanda es aleatoria y el artículo se administra utilizando el punto de pedido R = 10 y la cantidad de pedido Q = 20. Atrás quedó el diente de sierra determinista; en su lugar hay algo más complejo y realista (la Escalera Probabilística). Durante los 90 días simulados de operación, se realizaron 9 pedidos y el tiempo entre pedidos varió claramente.

Usando el modelo probabilístico, las respuestas a las dos preguntas (cuánto tiempo entre pedidos y cuántos en un año) se expresan como distribuciones de probabilidad que reflejan las probabilidades relativas de varios escenarios. La figura 3 muestra la distribución del número de días entre pedidos después de diez años de funcionamiento simulado. Si bien el promedio es de aproximadamente 8 días, el número real varía ampliamente, de 2 a 17.

En lugar de decirle a su proveedor que realizará X pedidos el próximo año, ahora puede proyectar X ± Y pedidos, y su proveedor conoce mejor sus riesgos al alza y a la baja. Mejor aún, podría proporcionar la distribución completa como la respuesta más rica posible.

Figura 2 Un escenario probabilístico de inventario disponible

Figura 2 Un escenario probabilístico de inventario disponible

 

Figura 3 Distribución de días entre pedidos

Figura 3: Distribución de días entre pedidos

 

Subiendo la escalera aleatoria hacia una mayor eficiencia

Ir más allá del modelo determinista de inventario abre nuevas posibilidades para optimizar las operaciones. En primer lugar, el modelo probabilístico permite una evaluación realista del riesgo de desabastecimiento. El modelo simple en la Figura 1 implica que nunca hay un desabastecimiento, mientras que los escenarios probabilísticos permiten la posibilidad (aunque en la Figura 2 solo hubo una llamada cercana alrededor del día 70). Una vez que se conoce el riesgo, el software puede optimizar buscando en el "espacio de diseño" (es decir, todos los valores posibles de R y Q) para encontrar un diseño que cumpla con un nivel objetivo de riesgo de desabastecimiento a un costo mínimo. El valor del modelo determinista en este análisis más realista es que proporciona un buen punto de partida para la búsqueda a través del espacio de diseño.

Resumen

El software moderno proporciona respuestas a preguntas operativas con varios grados de detalle. Utilizando el ejemplo del tiempo entre pedidos de reabastecimiento, hemos demostrado que la respuesta se puede calcular de manera aproximada pero rápida mediante un modelo determinista simple. Pero también se puede proporcionar con mucho más detalle con toda la variabilidad expuesta por un modelo probabilístico. Pensamos en estas alternativas como complementarias. El modelo determinista agrupa todas las variables clave en un formato fácil de entender. El modelo probabilístico proporciona el realismo adicional que los profesionales esperan y respalda la búsqueda efectiva de opciones óptimas de punto de pedido y cantidad de pedido.

 

Deja un comentario
Artículos Relacionados
¿Cómo vamos? KPI y KPP

¿Cómo vamos? KPI y KPP

Lidiar con el día a día de la gestión de inventario puede mantenerle ocupado. Pero sabes que tienes que levantar la cabeza de vez en cuando para ver hacia dónde te diriges. Para eso, su software de inventario debe mostrarle métricas (y no solo una, sino un conjunto completo de métricas o KPI): indicadores clave de rendimiento.

¿Confundido acerca de la IA y el aprendizaje automático?

¿Confundido acerca de la IA y el aprendizaje automático?

¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

Aumento de los ingresos mediante el aumento de la disponibilidad de piezas de repuesto

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Comencemos reconociendo que el aumento de los ingresos es bueno para usted y que aumentar la disponibilidad de las piezas de repuesto que proporciona es bueno para sus clientes.

Pero también reconozcamos que aumentar la disponibilidad de artículos no necesariamente conducirá a mayores ingresos. Si planifica incorrectamente y termina teniendo un exceso de inventario, el efecto neto puede ser bueno para sus clientes, pero definitivamente será malo para usted. Debe haber alguna forma correcta de hacer que esto sea beneficioso para todos, si tan solo se puede reconocer.

Para tomar la decisión correcta aquí, debe pensar sistemáticamente sobre el problema. Eso requiere que utilice modelos probabilísticos del proceso de control de inventario.

 

un escenario

Consideremos un escenario específico y realista. Muchos factores influyen en los resultados:

  • El artículo: Una pieza de repuesto específica de bajo volumen.
  • Demanda media: promedio de 0,1 unidades por día (por lo tanto, altamente "intermitente")
  • Desviación estándar de la demanda: 0,35 unidades por día (por lo tanto, muy variable o “sobredispersada”).
  • Plazo medio de entrega del proveedor: 5 días.
  • Costo unitario: $100.
  • Costo de mantenimiento por año como % del costo unitario: 10%.
  • Costo de pedido por corte de orden de compra: $25.
  • Consecuencias del desabastecimiento: pérdida de ventas (por lo tanto, un mercado competitivo, sin pedidos pendientes).
  • Costo de escasez por venta perdida: $100.
  • Objetivo de nivel de servicio: 85% (por lo tanto, 15% de probabilidad de desabastecimiento en cualquier ciclo de reabastecimiento).
  • Política de control de inventario: revisión periódica/pedido hasta (también llamada política en (T,S))

 

Política de control de inventario

Una palabra sobre la política de control de inventario. La política (T,S) es una de varias que son comunes en la práctica. Aunque existen otras políticas más eficientes (p. ej., no esperan a que pasen T días para hacer el ajuste de stock), (T,S) es una de las más sencillas y, por lo tanto, bastante popular. Funciona de esta manera: cada T días, verifica cuántas unidades tiene en stock, digamos X unidades. Luego, solicita unidades SX, que aparecen después del tiempo de entrega del proveedor (en este caso, 5 días). La T en (T,S) es el “intervalo de pedido”, el número de días entre pedidos; la S es el "pedido hasta el nivel", la cantidad de unidades que desea tener disponibles al comienzo de cada ciclo de reposición.

Para aprovechar al máximo esta política, debe elegir sabiamente los valores de T y S. Elegir sabiamente significa que no puede ganar adivinando o usando guías simples de reglas generales como "Mantenga un promedio de 3 veces la demanda promedio disponible". Las malas elecciones de T y S perjudican tanto a sus clientes como a sus resultados. Y quedarse demasiado tiempo con opciones que alguna vez fueron buenas puede resultar en un rendimiento deficiente si alguno de los factores anteriores cambia significativamente, por lo que los valores de T y S deben recalcularse de vez en cuando.

La forma inteligente de elegir los valores correctos de T y S es usar modelos probabilísticos codificados en software avanzado. El uso de software es esencial cuando tiene que escalar y elegir valores de T y S que sean correctos no para un artículo sino para cientos o miles.

 

Análisis de Escenario

Pensemos en cómo ganar dinero en este escenario. ¿Cuál es el lado positivo? Si no hubiera gastos, este rubro podría generar un promedio de $3.650 por año: 0,1 unidades/día x 365 días x $100/unidad. Se restarán de eso los costos operativos, compuestos por costos de mantenimiento, pedidos y faltantes. Cada uno de ellos dependerá de sus elecciones de T y S.

El software proporciona números específicos: la configuración de T = 321 días y S = 40 unidades dará como resultado costos operativos anuales promedio de $604, dando un margen esperado de $3,650 – $604 = $3,046. Ver Tabla 1, columna izquierda. Este uso de software se denomina "análisis predictivo" porque traduce las entradas del diseño del sistema en estimaciones de un indicador clave de rendimiento, el margen.

Ahora piensa si puedes hacerlo mejor. El objetivo de nivel de servicio en este escenario es 85%, que es un estándar algo relajado que no llamará la atención. ¿Qué pasaría si pudiera ofrecer a sus clientes un nivel de servicio 99%? Eso suena como una clara ventaja competitiva, pero ¿reduciría su margen? No si ajusta correctamente los valores de T y S.

Establecer T = 216 días y S = 35 unidades reducirá los costos operativos anuales promedio a $551 y aumentará el margen esperado a $3,650 – $551 = $3,099. Ver Tabla 1, columna derecha. Aquí está el ganar-ganar que queríamos: mayor satisfacción del cliente y aproximadamente 2% más de ingresos. Este uso del software se denomina "análisis de sensibilidad" porque muestra cuán sensible es el margen a la elección del objetivo de nivel de servicio.

El software también puede ayudarlo a visualizar la dinámica compleja y aleatoria de los movimientos de inventario. Un subproducto del análisis que llenó la Tabla 1 son los gráficos que muestran las rutas aleatorias tomadas por las existencias a medida que disminuyen durante un ciclo de reabastecimiento. La figura 1 muestra una selección de 100 escenarios aleatorios para el escenario en el que el nivel de servicio objetivo es 99%. En la figura, solo 1 de los 100 escenarios resultó en un desabastecimiento, lo que confirma la precisión de la elección del pedido hasta el nivel.

 

Resumen

La gestión de los inventarios de piezas de repuesto a menudo se realiza al azar utilizando el instinto, el hábito o la regla empírica obsoleta. Volarlo de esta manera no es un camino confiable y reproducible hacia un mayor margen o una mayor satisfacción del cliente. La teoría de la probabilidad, destilada en modelos de probabilidad y luego codificada en software avanzado, es la base para una guía coherente y eficiente sobre cómo administrar las piezas de repuesto en función de los hechos: características de la demanda, plazos de entrega, objetivos de nivel de servicio, costos y otros factores. Los escenarios analizados aquí ilustran que es posible lograr niveles de servicio más altos y un margen más alto. Una multitud de escenarios que no se muestran aquí ofrecen formas de lograr niveles de servicio más altos pero pierden margen. Usa el programa.

Escenarios con diferentes objetivos de nivel de servicio

Stock disponible durante un ciclo de reposición

 

 

Deja un comentario

Artículos Relacionados

3 tipos de análisis de la cadena de suministro

3 tipos de análisis de la cadena de suministro

Los tres tipos de análisis de la cadena de suministro son "descriptivos", "predictivos" y "prescriptivos". Cada uno juega un papel diferente para ayudarlo a administrar su inventario. El software moderno de la cadena de suministro le permite explotar los tres y ayudarlo a reducir los costos de inventario, mejorar los niveles de servicio y entrega a tiempo, mientras ejecuta una cadena de suministro más eficiente.

Un control sobre la automatización de pronósticos con el índice de atención

Un control sobre la automatización de pronósticos con el índice de atención

Una nueva métrica que llamamos "Índice de atención" ayudará a los pronosticadores a identificar situaciones en las que "los datos se comportan mal" pueden distorsionar los pronósticos estadísticos automáticos (ver el poema adyacente). Identifica rápidamente aquellos elementos que probablemente requieran anulaciones de pronósticos, lo que proporciona una forma más eficiente de poner a trabajar la experiencia comercial y otra inteligencia humana para maximizar la precisión de los pronósticos. ¿Como funciona?

¿Demasiado o muy poco inventario?

¿Demasiado o muy poco inventario?

¿Sabe qué artículos tienen demasiado o muy poco inventario? ¿Qué pasaría si supieras? ¿Cómo haría para reducir el exceso de existencias y al mismo tiempo garantizar un nivel de servicio competitivo? ¿Sería capaz de reducir los desabastecimientos sin incurrir en un aumento de inventario prohibitivamente costoso? ¿Cómo afectarían estos cambios a los niveles de servicio, costos y turnos, para artículos individuales, grupos de artículos y en general?

Mensajes recientes

  • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
    En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
  • 5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
    La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
  • Dos empleados verifican el inventario en un almacén temporal en un almacén de distribución.12 causas del exceso de stock y soluciones prácticas
    Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
  • Preguntas frecuentes Cómo dominar la gestión inteligente de IP&O para una mejor gestión del inventarioPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
    Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
  • 7 tendencias clave en planificación de la demanda que están dando forma al futuro7 tendencias clave en planificación de la demanda que están dando forma al futuro
    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
      En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
    • Innovando en el mercado de repuestos OEM con optimización de inventario XL impulsada por IAInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
    • Servicios públicos preparados para el futuro. Análisis avanzado para la optimización de la cadena de suministroUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

      Software inteligente celebra 40 años

      40 años de innovación para la previsión de la demanda, la planificación del inventario y el análisis de la cadena de suministro

        Belmont, MA, 1 de junio de 2021: hoy se cumple el 40 aniversario de Smart Software, un innovador líder en software de planificación de la demanda, pronóstico estadístico, gestión de inventario y análisis de la cadena de suministro. El CEO de la compañía, Greg Hartunian, comentó: “Nuestro éxito se basa en la innovación continua. Nuestra misión sigue el camino que nuestros fundadores iniciaron hace 40 años; Brindamos soluciones analíticas de vanguardia que ayudan a nuestros clientes a maximizar las ventas y minimizar el desperdicio. Estamos enormemente agradecidos con nuestros clientes que nos han brindado su apoyo, confianza y confianza. Gracias a nuestra comunidad de socios de revendedores y consultores que han movilizado nuestro crecimiento y han compartido su experiencia con nosotros. También estamos en deuda con nuestros numerosos empleados, pasados y presentes, locales y extranjeros, cuya creatividad y dedicación han producido sistemas que están beneficiando a tantas grandes empresas en todo el mundo”. Smart, Hartunian y Willemain fue incorporada en junio de 1981 por Charles Smart, Nelson Hartunian y Thomas Willemain, nuestros fundadores visionarios. Posteriormente, la empresa se incorporó como Smart Software, Inc en 1984, lo que refleja su cambio de consultoría boutique a software. A lo largo de los años, su trabajo pionero produjo el primer sistema automático de pronóstico estadístico para computadora personal, un método patentado ganador del premio APICS para la planificación de la demanda intermitente y, más recientemente, una plataforma de pronóstico probabilístico nativa de la nube. Todos han producido importantes reducciones de costos de inventario y mejoras en el nivel de servicio para nuestros clientes. Para obtener más información sobre las raíces y el viaje de Smart Software, haga clic aquí:     Historia de la empresa de software inteligente   

      Logotipo de software inteligente 40 años

        “Smart nos da buena información para trabajar. El método de planificación del nivel de servicio ha dado lugar a conversaciones productivas entre ventas y la cadena de suministro y nos ha dado un terreno común en el que basamos nuestras discusiones. Las personas se sienten cómodas con los números y, a través de nuestro proceso de S&OP, hemos podido generar aceptación en toda la empresa”. Rod Cardenas – Gerente de Compras, Forum Energy   “Se implementó como parte de nuestra implementación de un nuevo modelo de distribución centralizado y destacó importantes puntos ciegos en el plan original del proyecto. Los pronósticos precisos de los niveles de existencias y el recuento de SKU proporcionaron datos basados en hechos que nos permitieron dividir estratégicamente el esfuerzo de consolidación donde el espacio de almacenamiento era un bien escaso”. Eric Nelson – CPA, CMA. Gerente de Suministro de Partes y Logística. Tránsito BC   “Es fácil para nosotros dar a los proveedores información que nunca antes habían tenido. Nuestros proveedores pueden planificar su producción y trabajar con sus proveedores. Esa visibilidad ha sido invaluable. Ahí es donde vendrá la verdadera recompensa. No solo reducir el inventario o ahorrar tiempo a las personas que administran el inventario, sino también responder mejor a las necesidades de los clientes. Para mí, ese es el beneficio general de este software”. Bud Schultz, vicepresidente de finanzas NKK Switches        
        SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños. Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478. Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com    
      Cuatro formas útiles de medir el error de pronóstico

      El Blog de Smart

       Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      Mejore la precisión de la prediccion, optimice el inventario y maximice los niveles de servicio

      En este video, el Dr. Thomas Willemain, cofundador y vicepresidente senior de investigación, habla sobre cómo mejorar la precisión de los pronósticos midiendo el error de pronóstico. Comenzamos con una descripción general de los distintos tipos de métricas de error: error dependiente de escala, error porcentual, error relativo y métrica de error sin escala. Si bien algunos errores son inevitables, hay formas de reducirlos, y las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico. Luego explicaremos el problema especial de la demanda intermitente y los problemas de división por cero. Tom concluye explicando cómo evaluar los pronósticos de múltiples artículos y cómo a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.

       

      Cuatro tipos generales de métricas de error 

      1. Error dependiente de la escala
      2. Error porcentual
      3. Error relativo
      4. Error sin escala

      Observación: Las métricas dependientes de la escala se expresan en las unidades de la variable pronosticada. Los otros tres se expresan como porcentajes.

       

      1. Métricas de error dependientes de la escala

      • Error absoluto medio (MAE), también conocido como desviación absoluta media (MAD)
      • Error absoluto medio (MdAE)
      • Error cuadrático medio (RMSE)
      • Estas métricas expresan el error en las unidades originales de los datos.
        • Ej: unidades, cajas, barriles, kilogramos, dólares, litros, etc.
      • Dado que los pronósticos pueden ser demasiado altos o demasiado bajos, los signos de los errores serán positivos o negativos, lo que permitirá cancelaciones no deseadas.
        • Ej: no desea que los errores de +50 y -50 se cancelen y muestren "sin error".
      • Para lidiar con el problema de la cancelación, estas métricas eliminan los signos negativos elevando al cuadrado o utilizando el valor absoluto.

       

      2. Métrica de porcentaje de error

      • Error porcentual absoluto medio (MAPE)
      • Esta métrica expresa el tamaño del error como porcentaje del valor real de la variable pronosticada.
      • La ventaja de este enfoque es que deja claro de inmediato si el error es importante o no.
      • Ej: Supongamos que el MAE es de 100 unidades. ¿Es horrible un error típico de 100 unidades? ¿OK? ¿estupendo?
      • La respuesta depende del tamaño de la variable que se pronostica. Si el valor real es 100, entonces un MAE = 100 es tan grande como lo que se pronostica. Pero si el valor real es 10,000, entonces un MAE = 100 muestra una gran precisión, ya que el MAPE es solo 1% del real.

       

      3. Métrica de error relativo

      • Error absoluto relativo mediano (MdRAE)
      • ¿Relativo a qué? A un pronóstico de referencia.
      • ¿Qué punto de referencia? Por lo general, el pronóstico "ingenuo".
      • ¿Cuál es el pronóstico ingenuo? Próximo valor de previsión = último valor real.
      • ¿Por qué utilizar el pronóstico ingenuo? Porque si no puedes vencer eso, estás en una forma difícil.

       

      4. Métrica de error sin escala

      • Error escalado relativo mediano (MdRSE)
      • Esta métrica expresa el error de pronóstico absoluto como un porcentaje del nivel natural de aleatoriedad (volatilidad) en los datos.
      • La volatilidad se mide por el tamaño promedio del cambio en la variable pronosticada de un período de tiempo al siguiente.
        • (Esto es lo mismo que el error cometido por el pronóstico ingenuo).
      • ¿En qué se diferencia esta métrica de la MdRAE anterior?
        • Ambos usan el pronóstico ingenuo, pero esta métrica usa errores al pronosticar el historial de demanda, mientras que MdRAE usa errores al pronosticar valores futuros.
        • Esto es importante porque normalmente hay muchos más valores históricos que pronósticos.
        • A su vez, eso es importante porque esta métrica "explotaría" si todos los datos fueran cero, lo que es menos probable cuando se usa el historial de demanda.

       

      Planificación de demanda intermitente y previsión de piezas

       

      El problema especial de la demanda intermitente

      • La demanda "intermitente" tiene muchas demandas cero mezcladas con demandas aleatorias distintas de cero.
      • MAPE se arruina cuando los errores se dividen por cero.
      • MdRAE también puede arruinarse.
      • Es menos probable que MdSAE se arruine.

       

      Resumen y comentarios

      • Las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico.
      • Hay dos clases principales de métricas: absolutas y relativas.
      • Las medidas absolutas (MAE, MdAE, RMSE) son opciones naturales al evaluar los pronósticos de un artículo.
      • Las medidas relativas (MAPE, MdRAE, MdSAE) son útiles al comparar la precisión entre elementos o entre pronósticos alternativos del mismo elemento o al evaluar la precisión en relación con la variabilidad natural de un elemento.
      • La demanda intermitente presenta problemas de división por cero que favorecen a MdSAE sobre MAPE.
      • Al evaluar los pronósticos de varios artículos, a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.
      Deja un comentario

      MENSAJES RECIENTES

      ¿Cómo vamos? KPI y KPP

      ¿Cómo vamos? KPI y KPP

      Lidiar con el día a día de la gestión de inventario puede mantenerle ocupado. Pero sabes que tienes que levantar la cabeza de vez en cuando para ver hacia dónde te diriges. Para eso, su software de inventario debe mostrarle métricas (y no solo una, sino un conjunto completo de métricas o KPI): indicadores clave de rendimiento.

      ¿Confundido acerca de la IA y el aprendizaje automático?

      ¿Confundido acerca de la IA y el aprendizaje automático?

      ¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

      Mensajes recientes

      • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
        En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
      • 5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
        La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
      • Dos empleados verifican el inventario en un almacén temporal en un almacén de distribución.12 causas del exceso de stock y soluciones prácticas
        Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
      • Preguntas frecuentes Cómo dominar la gestión inteligente de IP&O para una mejor gestión del inventarioPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
        Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
      • 7 tendencias clave en planificación de la demanda que están dando forma al futuro7 tendencias clave en planificación de la demanda que están dando forma al futuro
        La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
          En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
        • Innovando en el mercado de repuestos OEM con optimización de inventario XL impulsada por IAInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
          El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
        • Servicios públicos preparados para el futuro. Análisis avanzado para la optimización de la cadena de suministroUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
          Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
        • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
          En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

          Reconsidere las excepciones y afine la planificación para abordar la incertidumbre

          El Blog de Smart

           Recomendaciones para la planificación de la demanda,

          previsión y optimización de inventario

          Planificación de inventario desde la perspectiva de un físico

          En un mundo perfecto, Just in Time (JIT) sería la solución adecuada para la gestión de inventario. Si puede predecir exactamente lo que necesita y dónde lo necesita y sus proveedores pueden obtener lo que necesita sin demora, entonces no necesita mantener mucho inventario localmente. Pero como dice el dicho del famoso pugilista Mike Tyson, “todos tienen un plan hasta que les dan un puñetazo en la boca”. Y el último golpe en la boca para la cadena de suministro global fue el Bloqueo del Canal de Suez de la semana pasada que retuvo $9.6B en el comercio con un costo estimado de $6.7M por minuto.[1]. Las interrupciones de estos y otros eventos similares deben modelarse y tenerse en cuenta en su planificación.

          La suposición de que puedes exactamente Predice el futuro era evidente en las leyes de Isaac Newton. Desde la década de 1920 con la introducción de la física cuántica, la incertidumbre se volvió fundamental para nuestra comprensión de la naturaleza. La incertidumbre está integrada en la realidad fundamental. También debe integrarse en los procesos de planificación de la oferta y la demanda. Sin embargo, con demasiada frecuencia, los eventos del cisne negro, como el bloqueo del Canal de Suez, se consideran anomalías y, como resultado, se descartan al planificar. No es suficiente mirar hacia atrás en retrospectiva y proclamar que debería haberse esperado. Es necesario hacer algo para abordar la ocurrencia de otros eventos similares en el futuro y planificar los niveles de existencias en consecuencia.

          Debemos ir más allá del pensamiento de "distribución de cola delgada" donde se descuentan los resultados extremos y planificar para "colas gruesas". Entonces, ¿cómo ejecutamos un plan JIT del mundo real cuando se trata de planificar el inventario? Para hacer esto, el primer paso es estimar el tiempo de entrega realista para obtener un artículo. Sin embargo, la estimación es difícil debido a la incertidumbre del tiempo de entrega. Utilizando los plazos de entrega reales de los proveedores en la base de datos de su empresa y los datos externos, puede desarrollar una distribución de posibles plazos de entrega y demandas futuras dentro de esos plazos de entrega. Pronóstico probabilístico le permitirá tener en cuenta las interrupciones y los eventos inusuales al no limitar sus estimaciones a lo que se ha observado únicamente en su propia demanda a corto plazo y datos de tiempo de entrega. Podrás generar posibles resultados con probabilidades asociadas para cada ocurrencia.

          Una vez que tenga una estimación del tiempo de entrega y la distribución de la demanda, puede especificar el nivel de servicio necesitas tener para esa parte. Utilizando soluciones como Optimización de inventario inteligente (SIO), podrá almacenar con confianza en función del riesgo de agotamiento de existencias objetivo con un costo mínimo de mantenimiento de inventario. También puede considerar dejar que la solución prescriba objetivos de nivel de servicio óptimos mediante la evaluación de los costos de inventario adicional frente al costo de falta de existencias.

          Finalmente, como ya he señalado, debemos aceptar que nunca podremos eliminar toda la incertidumbre. Como físico, siempre me ha intrigado el hecho de que, incluso en los niveles más básicos de la realidad tal como la entendemos hoy, todavía hay incertidumbre. Albert Einstein creía en la certeza (determinismo) de la ley física. Si fuera gerente de inventario, podría haber abogado por JIT porque creía que las leyes físicas deberían permitir una previsibilidad perfecta. Él dijo célebremente: “Dios no juega con los dados”. ¿O podría ser posible que el universo en el que existimos fuera un evento de "cisne negro" en un "verso múltiple" anterior que produjo un tipo particular de universo que nos permitió existir?

          En la planificación de inventarios, como en la ciencia, no podemos escapar de la realidad de la incertidumbre y el impacto de eventos inusuales. Debemos planificar en consecuencia.

           

          [1] https://www.bbc.com/news/business-56559073#:~:text=Looking%20at%20the%20bigger%20picture,0.2%20to%200.4%20percentage%20points.

          Deja un comentario

          Artículos Relacionados

          3 tipos de análisis de la cadena de suministro

          3 tipos de análisis de la cadena de suministro

          Los tres tipos de análisis de la cadena de suministro son "descriptivos", "predictivos" y "prescriptivos". Cada uno juega un papel diferente para ayudarlo a administrar su inventario. El software moderno de la cadena de suministro le permite explotar los tres y ayudarlo a reducir los costos de inventario, mejorar los niveles de servicio y entrega a tiempo, mientras ejecuta una cadena de suministro más eficiente.

          Un control sobre la automatización de pronósticos con el índice de atención

          Un control sobre la automatización de pronósticos con el índice de atención

          Una nueva métrica que llamamos "Índice de atención" ayudará a los pronosticadores a identificar situaciones en las que "los datos se comportan mal" pueden distorsionar los pronósticos estadísticos automáticos (ver el poema adyacente). Identifica rápidamente aquellos elementos que probablemente requieran anulaciones de pronósticos, lo que proporciona una forma más eficiente de poner a trabajar la experiencia comercial y otra inteligencia humana para maximizar la precisión de los pronósticos. ¿Como funciona?

          ¿Demasiado o muy poco inventario?

          ¿Demasiado o muy poco inventario?

          ¿Sabe qué artículos tienen demasiado o muy poco inventario? ¿Qué pasaría si supieras? ¿Cómo haría para reducir el exceso de existencias y al mismo tiempo garantizar un nivel de servicio competitivo? ¿Sería capaz de reducir los desabastecimientos sin incurrir en un aumento de inventario prohibitivamente costoso? ¿Cómo afectarían estos cambios a los niveles de servicio, costos y turnos, para artículos individuales, grupos de artículos y en general?

          Mensajes recientes

          • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
            En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
          • 5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
            La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
          • Dos empleados verifican el inventario en un almacén temporal en un almacén de distribución.12 causas del exceso de stock y soluciones prácticas
            Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
          • Preguntas frecuentes Cómo dominar la gestión inteligente de IP&O para una mejor gestión del inventarioPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
            Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
          • 7 tendencias clave en planificación de la demanda que están dando forma al futuro7 tendencias clave en planificación de la demanda que están dando forma al futuro
            La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

            Optimización de inventario para fabricantes, distribuidores y MRO

            • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
              En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
            • Innovando en el mercado de repuestos OEM con optimización de inventario XL impulsada por IAInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
              El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
            • Servicios públicos preparados para el futuro. Análisis avanzado para la optimización de la cadena de suministroUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
              Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
            • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
              En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]