El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Si sigues las noticias sobre análisis de la cadena de suministro, se encontrará con más frecuencia con la frase “pronóstico probabilístico”. Si esta frase es desconcertante, sigue leyendo.

Probablemente ya sepa lo que significa "pronóstico". Y probablemente también sepa que parece haber muchas maneras diferentes de hacerlo. Y probablemente haya escuchado pequeñas frases picantes como "todo pronóstico es incorrecto". Así que sabes que algún tipo de matemágica podría calcular que "el pronóstico es que venderá 100 unidades el próximo mes", y luego podría vender 110 unidades, en cuyo caso tiene un error de pronóstico 10%.

Es posible que no sepa que lo que acabo de describir es un tipo particular de pronóstico llamado "pronóstico puntual". Un pronóstico puntual se llama así porque consta de un solo número (es decir, un punto en la recta numérica, si recuerda la recta numérica de su juventud).

Pronósticos puntuales tienen una virtud: Son simples. También tienen un defecto: dan lugar a afirmaciones sarcásticas como “todas las previsiones están equivocadas”. Es decir, en la mayoría de los casos realistas, es poco probable que el valor real sea exactamente igual al pronóstico. (Lo cual no es gran cosa si el pronóstico es lo suficientemente cercano).

Esto nos lleva al "pronóstico probabilístico". Este enfoque es un paso adelante, porque en lugar de producir un pronóstico de un solo número (punto), produce una distribución de probabilidad para el pronóstico. Y a diferencia de los modelos extrapolativos tradicionales que se basan únicamente en los datos históricos, los pronósticos probabilísticos tienen la capacidad de simular valores futuros que no están anclados al pasado.

“Distribución de probabilidad” es una frase prohibitiva, que evoca algunas matemáticas arcanas de las que quizás hayas oído hablar pero que nunca hayas estudiado. Afortunadamente, la mayoría de los adultos tienen suficiente experiencia de vida para tener una comprensión intuitiva del concepto. Cuando se desglosa, es bastante sencillo de entender.

Imagina el simple acto de lanzar dos monedas. Puede llamar a esto diversión inofensiva, pero yo lo llamo un "experimento probabilístico". El número total de caras que salgan en las dos monedas será cero, uno o dos. Lanzar dos monedas es un "experimento aleatorio". El número resultante de cabezas es una "variable aleatoria". Tiene una “distribución de probabilidad”, que no es más que una tabla de la probabilidad de que la variable aleatoria tenga alguno de sus posibles valores. La probabilidad de obtener dos caras cuando las monedas son justas resulta ser ¼, al igual que la probabilidad de que no salga cara. La probabilidad de una cara es ½.

El mismo enfoque puede describir una variable aleatoria más interesante, como la demanda diaria de una pieza de repuesto. La Figura 2 muestra tal distribución de probabilidad. Se calculó mediante la compilación de tres años de datos de demanda diaria de una determinada parte utilizada en un instrumento científico vendido a hospitales.

 

Pronóstico probabilístico de demanda 1

Figura 1: La distribución de probabilidad de la demanda diaria de una determinada pieza de repuesto

 

La distribución de la Figura 1 se puede considerar como un pronóstico probabilístico de la demanda en un solo día. Para esta parte en particular, vemos que es muy probable que el pronóstico sea cero (probabilidad 97%), pero a veces será para un puñado de unidades, y una vez cada tres años será para veinte unidades. Aunque el pronóstico más probable es cero, querrás tener algunos a mano si esta parte fuera crítica ("... por falta de un clavo...")

Ahora usemos esta información para hacer un pronóstico probabilístico más complicado. Suponga que tiene tres unidades a mano. ¿Cuántos días tardará en no tener ninguno? Hay muchas respuestas posibles, que van desde un solo día (si obtiene inmediatamente una demanda de tres o más) hasta un número muy grande (ya que 97% de días no ven demanda). El análisis de esta pregunta es un poco complicado debido a todas las formas en que esta situación puede desarrollarse, pero la respuesta final que es más informativa será una distribución de probabilidad. Resulta que el número de días hasta que no quedan unidades en stock tiene la distribución que se muestra en la Figura 2.

Pronóstico probabilístico de demanda 2

Figura 2: Distribución del número de días hasta que se acaban las tres unidades

 

El promedio de días es 74, lo que sería un pronóstico puntual, pero hay mucha variación alrededor del promedio. Desde la perspectiva de la gestión de inventario, cabe destacar que existe una posibilidad de 25% de que todas las unidades se hayan ido después de 32 días. Entonces, si decidió pedir más cuando solo tenía tres en el estante, sería bueno que el proveedor se los entregue antes de que haya pasado un mes. Si no pudieran, tendría la posibilidad de agotarse el 75%, lo que no es bueno para una pieza crítica.

El análisis detrás de la Figura 2 implicó hacer algunas suposiciones que eran convenientes pero no necesarias si no eran ciertas. Los resultados provinieron de un método llamado "simulación de Monte Carlo", en el que comenzamos con tres unidades, elegimos una demanda aleatoria de la distribución en la Figura 1, la restamos de las existencias actuales y continuamos hasta que se agoten las existencias, registrando cuántas Pasaron los días antes de que se acabara. Repitiendo este proceso 100.000 veces se produjo la Figura 2.

Las aplicaciones de la simulación de Monte Carlo se extienden a problemas de alcance aún mayor que el ejemplo anterior de "cuándo nos quedamos sin". Especialmente importantes son los pronósticos de Monte Carlo de la demanda futura. Si bien el resultado habitual de los pronósticos es un conjunto de pronósticos puntuales (por ejemplo, la demanda unitaria esperada durante los próximos doce meses), sabemos que la demanda real podría desarrollarse de varias maneras. La simulación podría usarse para producir, digamos, mil conjuntos posibles de 365 demandas diarias.

Este conjunto de escenarios de demanda expondría de manera más completa el rango de posibles situaciones con las que tendría que lidiar un sistema de inventario. Este uso de la simulación se denomina "prueba de estrés", porque expone un sistema a una variedad de escenarios variados pero realistas, incluidos algunos desagradables. Luego, esos escenarios se ingresan en modelos matemáticos del sistema para ver qué tan bien los manejará, como se refleja en los indicadores clave de rendimiento (KPI). Por ejemplo, en esos mil años simulados de operación, ¿cuántos desabastecimientos hay en el peor año? el año promedio? el mejor año? De hecho, ¿cuál es la distribución de probabilidad completa del número de desabastecimientos en un año y cuál es la distribución de su tamaño?

Las Figuras 3 y 4 ilustran el modelado probabilístico de un sistema de control de inventario que convierte los desabastecimientos en pedidos atrasados. El sistema simulado usa una política de control Min/Max con Min = 10 unidades y Max = 20 unidades.

La Figura 3 muestra un año simulado de operaciones diarias en cuatro parcelas. El primer gráfico muestra un patrón particular de demanda diaria aleatoria en el que la demanda promedio aumenta constantemente de lunes a viernes pero desaparece los fines de semana. La segunda gráfica muestra el número de unidades disponibles cada día. Tenga en cuenta que hay una docena de veces durante este año simulado cuando el inventario se vuelve negativo, lo que indica falta de existencias. El tercer gráfico muestra el tamaño y el momento de los pedidos de reabastecimiento. La cuarta gráfica muestra el tamaño y el tiempo de los pedidos pendientes. La información de estos gráficos se puede traducir en estimaciones de inversión en inventario, unidades promedio disponibles, costos de mantenimiento, costos de pedido y costos de escasez.

Pronóstico probabilístico de demanda 3

Figura 3: Un año simulado de operación del sistema de inventario

 

La figura 3 muestra uno de mil años simulados. Cada año tendrá diferentes demandas diarias, lo que dará como resultado diferentes valores de métricas como unidades disponibles y los diversos componentes del costo operativo. La figura 4 traza la distribución de 1000 valores simulados de cuatro KPI. La simulación de 1000 años de operación imaginada expone el rango de resultados posibles para que los planificadores puedan tener en cuenta no solo los resultados promedio, sino también ver los valores en el mejor y el peor de los casos.

Pronóstico probabilístico de demanda 4

Figura 4: Distribuciones de cuatro KPI basadas en 1000 simulaciones

 

La simulación de Monte Carlo es un enfoque de pronóstico probabilístico de pocas matemáticas y altos resultados: muy práctico y fácil de explicar. Los métodos avanzados de pronóstico probabilístico empleados por Smart Software amplían la simulación estándar de Monte Carlo y producen estimaciones extremadamente precisas de los niveles de inventario requeridos.

 

Deja un comentario

Artículos Relacionados

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

Cómo manejar pronósticos estadísticos de cero

Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero?

Mensajes recientes

  • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
    A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
  • Grupo de negocios de estilo en trajes de negocios clásicos con binoculares y telescopios reproducen diferentes métodos de pronósticoCómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico
    Este blog explica cómo funciona cada modelo de pronóstico utilizando gráficos de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro. […]
  • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
  • Qué hacer cuando un pronóstico estadístico no tiene sentidoQué hacer cuando un pronóstico estadístico no tiene sentido
    A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico. […]
  • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
      A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
    • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
      La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]