Todas las organizaciones que utilizan equipos necesitan piezas de repuesto. Todos ellos deben hacer frente a cuestiones que son genéricas sin importar cuál sea su negocio. Sin embargo, algunos de los problemas son específicos de la industria. Esta publicación analiza un problema universal que se manifiesta en una planta nuclear y que es especialmente grave para cualquier empresa de servicios eléctricos.
El problema universal de la calidad de los datos
A menudo publicamos sobre los beneficios de convertir los datos de uso de piezas en decisiones inteligentes de gestión de inventario. El modelado de probabilidad avanzado admite la generación de escenarios de demanda realistas que se integran en simulaciones detalladas de Monte Carlo que exponen las consecuencias de decisiones como las elecciones de Min y Max que rigen la reposición de repuestos.
Sin embargo, toda esa tecnología analítica nueva y brillante requiere datos de calidad como combustible para el análisis. Para algunos servicios públicos de todo tipo, el mantenimiento de registros no es un punto fuerte, por lo que la materia prima que se analiza puede corromperse y ser engañosa. Recientemente nos topamos con la documentación de un claro ejemplo de este problema en una planta de energía nuclear (ver Scala, Needy y Rajgopal: Toma de decisiones y compensaciones en la gestión del inventario de piezas de repuesto en las empresas de servicios públicos. Asociación Estadounidense de Gestión de Ingeniería, 30.ª Conferencia Nacional ASEM, Springfield, MO. octubre de 2009). Scala et al. documentó el historial de uso de una pieza crítica cuya ausencia resultaría en una reducción de la potencia de la instalación o en un cierre. El registro de uso de la planta para esa parte abarcó más de ocho años de datos. Durante ese tiempo, el historial de uso oficial reportó nueve eventos en los que se produjo una demanda positiva con tamaños que oscilaban entre una y seis unidades cada uno. También hubo cinco eventos marcados por demandas negativas (es decir, devoluciones a almacén) que oscilaron entre una y tres unidades cada uno. La investigación cuidadosa descubrió que el verdadero uso ocurrió en solo dos eventos, ambos con una demanda de dos unidades. Obviamente, calcular los mejores valores Mín./Máx. para este artículo requiere datos de demanda precisos.
El problema especial de la salud y la seguridad
En el contexto de negocios “normales”, la escasez de piezas de repuesto puede dañar tanto los ingresos actuales como los ingresos futuros (relacionados con la reputación como proveedor confiable). Sin embargo, para una empresa de servicios eléctricos, Scala et al. observó un nivel mucho mayor de consecuencias asociadas a los desabastecimientos de piezas de repuesto. Estos incluyen no solo un mayor riesgo financiero y de reputación, sino también riesgos para la salud y la seguridad: “Las ramificaciones de no tener una pieza en stock incluyen la posibilidad de tener que reducir la producción o, muy posiblemente, incluso el cierre de una planta. Desde una perspectiva a más largo plazo, hacerlo podría interrumpir el servicio crítico de energía para los clientes residenciales, comerciales y/o industriales, al tiempo que daña la reputación, la confiabilidad y la rentabilidad de la empresa. Una empresa de servicios eléctricos fabrica y vende un solo producto: electricidad. Perder la capacidad de vender electricidad puede dañar gravemente los resultados de la empresa, así como su viabilidad a largo plazo”.
Razón de más para que las empresas eléctricas sean líderes y no rezagadas en el despliegue de los modelos de probabilidad más avanzados para la previsión de la demanda y la optimización del inventario.
Soluciones de software para la planificación de repuestos
El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.
Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.
Lo que necesita saber sobre la previsión y la planificación de piezas de servicio
Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.