Para demasiadas empresas, una pieza fundamental de la investigación de datos –la medición de la incertidumbre de la demanda– se maneja mediante reglas generales simples pero inexactas. Por ejemplo, los planificadores de la demanda a menudo calculan el stock de seguridad mediante un múltiplo definido por el usuario del pronóstico o promedio histórico. O pueden configurar su ERP para pedir más cuando el inventario disponible llegue a 2 veces la demanda promedio durante el tiempo de entrega para artículos importantes y 1,5 veces para los menos importantes. Este es un gran error con costosas consecuencias.
La elección de varios acaba siendo un juego de adivinanzas. Esto se debe a que ningún ser humano puede calcular exactamente cuánto inventario almacenar considerando todas las incertidumbres. Los múltiplos de la demanda promedio del tiempo de entrega son fáciles de usar, pero nunca se puede saber si el múltiplo utilizado es demasiado grande o demasiado pequeño hasta que es demasiado tarde. Y una vez que lo sabes, toda la información ha cambiado, por lo que debes adivinar nuevamente y luego esperar y ver cómo resulta la última suposición. Con cada nuevo día, tiene una nueva demanda, nuevos detalles sobre los plazos de entrega y es posible que los costos hayan cambiado. La suposición de ayer, por muy educada que sea, ya no es relevante hoy. Una planificación adecuada del inventario debe estar libre de conjeturas sobre el inventario y las previsiones. Las decisiones deben tomarse con información incompleta, pero adivinar no es el camino a seguir.
Saber cuánto amortiguar requiere un análisis estadístico basado en hechos que pueda responder con precisión preguntas como:
- ¿Cuánto stock adicional se necesita para mejorar los niveles de servicio en 5%?
- Cuál será el impacto en la entrega a tiempo si el inventario se reduce en 5%
- Qué nivel de servicio objetivo es más rentable.
- ¿Cómo se verá afectado el riesgo de desabastecimiento por los plazos de entrega aleatorios que enfrentamos?
La intuición no puede responder a estas preguntas, no abarca miles de partes y, a menudo, se equivoca. Los datos, las matemáticas de probabilidad y el software moderno son mucho más eficaces. Impulsarse no es el camino hacia la excelencia sostenida.