Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

In onze vorige blog stelden we de vraag: Hoe weet je zeker dat je echt een beleid hebt voor voorraadplanning en vraagvoorspelling? We legden uit hoe het gebrek aan begrip van een organisatie over de basisprincipes (hoe een prognose tot stand komt, hoe veiligheidsvoorraadbuffers worden bepaald en hoe/waarom deze waarden worden aangepast) bijdraagt aan slechte prognosenauwkeurigheid, verkeerd toegewezen voorraad en gebrek aan vertrouwen in het geheel Verwerken.

In deze blog bekijken we 10 specifieke vragen die u kunt stellen om erachter te komen wat er echt speelt in uw bedrijf. We beschrijven de typische antwoorden die worden gegeven wanneer er niet echt een beleid voor prognoses/voorraadplanning bestaat, leggen uit hoe deze antwoorden moeten worden geïnterpreteerd en geven duidelijk advies over wat u eraan kunt doen.

Begin altijd met een simpele hypothetisch voorbeeld. Als u zich concentreert op een specifiek probleem dat u zojuist hebt ervaren, zal dit ongetwijfeld defensieve antwoorden uitlokken die het volledige verhaal verbergen. Het doel is om de daadwerkelijke benadering te ontdekken die wordt gebruikt om inventaris en prognoses te plannen die in de mentale wiskunde of spreadsheets is ingebakken. Hier is een voorbeeld:

Stel dat u 100 eenheden bij de hand heeft, de doorlooptijd om aan te vullen 3 maanden is en de gemiddelde maandelijkse vraag 20 eenheden is? Wanneer bestel je meer? Hoeveel zou jij bestellen? Hoe zal uw antwoord veranderen als de verwachte ontvangsten van 10 per maand zouden aankomen? Hoe verandert uw antwoord als het artikel een A-, B- of C-artikel is, de prijs van het artikel hoog of laag is, de doorlooptijd van het artikel lang of kort is? Simpel gezegd, wanneer u een productietaak plant of een nieuwe bestelling plaatst bij een leverancier, waarom deed u dat dan? Wat was de aanleiding voor de beslissing om meer te krijgen? Welke planningsinputs werden overwogen?

Wanneer u antwoorden op de bovenstaande vraag krijgt, concentreer u dan op het vinden van antwoorden op de volgende vragen:

1. Wat is de onderliggende aanvullingsbenadering? Dit is meestal een van Min/Max, prognose/veiligheidsvoorraad, bestelpunt/bestelhoeveelheid, periodieke beoordeling/bestelling tot of zelfs een vreemde combinatie

2. Hoe worden de planningsparameters, zoals vraagprognoses, bestelpunten of Min/Max, daadwerkelijk berekend? Het is niet voldoende om te weten dat u Min/Max gebruikt. U moet precies weten hoe deze waarden worden berekend. Antwoorden als “We gebruiken geschiedenis” of “We gebruiken een gemiddelde” zijn niet specifiek genoeg. U hebt antwoorden nodig die duidelijk aangeven hoe geschiedenis wordt gebruikt. Bijvoorbeeld, “We nemen een gemiddelde van de afgelopen 6 maanden, delen dat door 30 om een daggemiddelde te krijgen en vermenigvuldigen dat met de doorlooptijd in dagen. Voor 'A'-artikelen vermenigvuldigen we vervolgens de gemiddelde doorlooptijd met 2 en voor 'B'-artikelen gebruiken we een vermenigvuldiger van 1,5.” (Hoewel dat geen bijzonder goede technische benadering is, heeft het tenminste een duidelijke logica.)

Zodra u een goed gedefinieerd beleid heeft, kunt u de zwakke punten identificeren om het te verbeteren. Maar als het gegeven antwoord niet veel verder komt dan “We gebruiken geschiedenis”, dan heb je geen beleid om mee te beginnen. Uit antwoorden blijkt vaak dat verschillende planners geschiedenis op verschillende manieren gebruiken. Sommigen houden alleen rekening met de meest recente vraag, anderen slaan misschien in op basis van het gemiddelde van de perioden met de hoogste vraag, enz. Met andere woorden, het kan zijn dat u in feite meerdere ondoordachte "polissen" heeft.

3. Worden prognoses gebruikt om de bevoorradingsplanning aan te sturen en, zo ja, hoe? Veel bedrijven zullen zeggen dat ze voorspellen, maar hun prognoses worden op een andere manier berekend en gebruikt. Wordt de prognose gebruikt om te voorspellen welke voorraad er in de toekomst zal zijn, waardoor een order wordt geactiveerd? Of wordt het gebruikt om een bestelpunt af te leiden, maar niet om te voorspellen wanneer ik moet bestellen (dat wil zeggen, ik voorspel dat we er 10 per week zullen verkopen, dus om te helpen voorkomen dat de voorraad op is, zal ik meer bestellen als de voorraad op 15 komt)? Wordt het gebruikt als een leidraad voor de planner om subjectief te helpen bepalen wanneer ze meer moeten bestellen? Wordt het gebruikt om raamcontracten met leveranciers op te stellen? Sommigen gebruiken het om MRP aan te drijven. U moet deze details kennen. Een grondig antwoord op deze vraag zou er als volgt uit kunnen zien: “Mijn voorspelling is 10 per week en mijn doorlooptijd is 3 weken, dus ik maak mijn bestelpunt een veelvoud van die voorspelling, meestal 2 x de doorlooptijdvraag of 60 eenheden voor belangrijke artikelen en ik gebruik een kleiner veelvoud voor minder belangrijke artikelen. (Nogmaals, geen geweldige technische benadering, maar duidelijk.)

4. Welke techniek wordt eigenlijk gebruikt om de prognose te genereren? Is het een gemiddelde, een trending model zoals dubbele exponentiële afvlakking, een seizoensmodel? Hangt de keuze van de techniekverandering af van het type vraaggegevens of wanneer er nieuwe vraaggegevens beschikbaar zijn? (Reserveonderdelen en artikelen met een hoog volume hebben zeer verschillende vraagpatronen.) Hoe kiest u het prognosemodel? Is dit proces geautomatiseerd? Hoe vaak wordt de modelkeuze heroverwogen? Hoe vaak worden de modelparameters opnieuw berekend? Wat is het proces dat wordt gebruikt om uw aanpak te heroverwegen? Het antwoord documenteert hier hoe de basisprognoses tot stand komen. Eenmaal bepaald, kunt u een analyse uitvoeren om te bepalen of andere prognosemethoden zouden verbeteren nauwkeurigheid van de voorspelling. Als u de nauwkeurigheid van de prognoses niet documenteert en geen analyse van de toegevoegde waarde van de prognose uitvoert, bent u niet in staat om goed te beoordelen of de geproduceerde prognoses de beste zijn die ze kunnen zijn. U loopt kansen mis om het proces te verbeteren, de nauwkeurigheid van prognoses te vergroten en het bedrijf te informeren over welk type prognosefout normaal is en moet worden verwacht.

5. Hoe gebruik je veiligheidsvoorraad? Merk op dat de vraag niet was: "Gebruikt u veiligheidsvoorraad?" In deze context, en om het simpel te houden, betekent de term "veiligheidsvoorraad" voorraad die wordt gebruikt om voorraad te bufferen tegen variabiliteit van vraag en aanbod. Alle bedrijven gebruiken op de een of andere manier buffermethoden. Er zijn echter enkele uitzonderingen. Misschien bent u een werkplaatsfabrikant die alle onderdelen op bestelling aanschaft en vinden uw klanten het helemaal prima om weken of maanden op u te wachten om materiaal te vinden, te produceren, QA te leveren en te verzenden. Of misschien bent u een grote fabrikant met tonnen koopkracht, zodat uw leveranciers lokale magazijnen opzetten die volledig gevuld zijn en klaar om u vrijwel onmiddellijk van voorraad te voorzien. Als deze beschrijvingen uw bedrijf niet beschrijven, heeft u zeker een soort buffer om u te beschermen tegen variabiliteit in vraag en aanbod. U gebruikt het veld "veiligheidsvoorraad" misschien niet in uw ERP, maar u bent zeker aan het bufferen.

Er kunnen antwoorden worden gegeven zoals "We gebruiken geen veiligheidsvoorraad omdat we prognoses maken." Helaas, een goede voorspelling zal een 50/50 kans hebben om boven/onder de daadwerkelijke vraag te zijn. Dit betekent dat u 50% van de tijd een voorraad krijgt zonder dat er een veiligheidsvoorraadbuffer aan de prognose is toegevoegd. Voorspellingen zijn alleen perfect als er geen willekeur is. Aangezien er altijd willekeur is, moet u bufferen als u geen bodemloze serviceniveaus wilt hebben.

Als het antwoord niet wordt onthuld, kunt u wat meer onderzoeken hoe de verschillende aanvullingshendels worden gebruikt om mogelijke buffers toe te voegen, wat leidt tot vragen 6 en 7.

6. Verlengt u wel eens de doorlooptijd of bestelt u wel eens eerder dan nodig is?
In ons hypothetische voorbeeld heeft uw leverancier doorgaans 4 weken nodig om te leveren en is redelijk consistent. Maar om u te beschermen tegen stockouts, bestelt uw koper routinematig 6 weken uit in plaats van 4 weken. Het veiligheidsvoorraadveld in uw ERP-systeem staat misschien op nul omdat "we geen veiligheidsvoorraad gebruiken", maar in werkelijkheid heeft de bestelbenadering van de koper zojuist 2 weken buffervoorraad toegevoegd.

7. Vult u de vraagprognose in?
In ons voorbeeld verwacht de planner 10 eenheden per maand te verbruiken, maar "voor het geval dat" een prognose van 20 per maand invoert. Het veiligheidsvoorraadveld in het MRP-systeem is blanco gelaten, maar de nu vermomde buffervoorraad is de vraagprognose binnengesmokkeld. Dit is een fout die 'voorspellingsbias' introduceert. Niet alleen zullen uw prognoses minder nauwkeurig zijn, maar als er geen rekening wordt gehouden met de vertekening en de veiligheidsvoorraad wordt toegevoegd door andere afdelingen, zult u te veel bevoorraden.

Het ad-hockarakter van de bovenstaande benaderingen verergert de problemen door geen rekening te houden met de daadwerkelijke vraag of het aanbod variabiliteit van het artikel. De planner kan bijvoorbeeld gewoon een vuistregel maken die de doorlooptijdprognose voor belangrijke artikelen verdubbelt. Eén maat past niet allemaal als het gaat om voorraadbeheer. Deze benadering zal de voorspelbare artikelen substantieel overbevoorraden, terwijl de periodiek gevraagde artikelen substantieel onderbezet zijn. Jij kunt lezen "Pas op voor eenvoudige vuistregels voor voorraadbeheer” om meer te weten te komen over waarom dit soort aanpak zo kostbaar is.

De ad-hoc aard van de benaderingen negeert ook wat er gebeurt als het bedrijf wordt geconfronteerd met een enorme overstock of stock out. Bij het proberen te begrijpen wat er is gebeurd, zal het vermelde beleid worden onderzocht. In het geval van een overstock zal het systeem een veiligheidsvoorraad nul tonen. De bedrijfsleiders zullen aannemen dat ze geen veiligheidsvoorraad bij zich hebben, hun hoofd krabben en uiteindelijk de voorspelling de schuld geven, verklaren "Ons bedrijf kan niet worden voorspeld" en strompelen verder. Ze kunnen de leverancier zelfs de schuld geven voor het te vroeg verzenden en ervoor zorgen dat ze meer vasthouden dan nodig is. In het geval dat de voorraad op is, denken ze dat ze niet genoeg op voorraad hebben en voegen ze willekeurig meer voorraad toe aan veel items, zonder zich te realiseren dat er in feite veel extra veiligheidsvoorraad in het proces is ingebakken. Dit maakt het waarschijnlijker dat voorraden in de toekomst moeten worden afgeschreven.

8. Wat is de exacte inventaristerminologie die wordt gebruikt? Definieer wat u bedoelt met veiligheidsvoorraad, Min, bestelpunt, EOQ, enz. Hoewel er standaard technische definities het is mogelijk dat er iets anders is, en miscommunicatie zal hier problematisch zijn. Sommige bedrijven verwijzen bijvoorbeeld naar Min als de hoeveelheid voorraad die nodig is om aan de doorlooptijdvraag te voldoen, terwijl sommigen Min definiëren als inclusief zowel doorlooptijdvraag als veiligheidsvoorraad om te bufferen tegen vraagvariabiliteit. Anderen kunnen de minimale bestelhoeveelheid betekenen.

9. Is de aanwezige voorraad in overeenstemming met het beleid? Wanneer uw detectivewerk is voltooid en alles is gedocumenteerd, opent u uw spreadsheet of ERP-systeem en bekijkt u de beschikbare hoeveelheid. Het zou min of meer in overeenstemming moeten zijn met uw planningsparameters (dwz als Min/Max 20/40 is en de typische doorlooptijdvraag 10 is, dan zou u op elk moment ongeveer 10 tot 40 eenheden bij de hand moeten hebben. Verrassend genoeg, voor veel bedrijven is er vaak een enorme inconsistentie. We hebben situaties waargenomen waarin de min/max-instelling 20/40 is, maar de voorhanden voorraad 300+ is. Dit geeft aan dat het beleid dat is voorgeschreven gewoon niet wordt gevolgd. Dat is een groter probleem.

10. Wat ga je nu doen?

Vraagprognoses en voorraadopslagbeleid moeten goed gedefinieerde processen zijn die door alle betrokkenen worden begrepen en geaccepteerd.  Er zou nul mysterie moeten zijn.

Om dit goed te doen, moeten de vraag- en aanbodvariabiliteit worden geanalyseerd en gebruikt om de juiste niveaus van veiligheidsvoorraad te berekenen. Buffers toevoegen zonder een impliciet begrip van wat elke extra eenheid buffervoorraad u oplevert in termen van service, is als willekeurig een handvol ingrediënten in een cakerecept gooien. Een kleine verandering in ingrediënten kan een enorme impact hebben op wat er uit de oven komt: de ene hap is te zoet, de volgende te zuur. Zo is het ook met voorraadbeheer. Een beetje extra hier, een beetje minder daar, en al snel zit je met kostbare overtollige voorraad in sommige gebieden, pijnlijke tekorten in andere, geen idee hoe je daar bent gekomen, en met weinig begeleiding om dingen beter te maken.

Modern Inventory optimization en software voor vraagplanning met zijn geavanceerde analyses en sterke basis in prognoseanalyse kan veel helpen bij dit probleem. Maar zelfs de beste software helpt niet als deze inconsistent wordt gebruikt.

Laat een reactie achter

gerelateerde berichten

Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

In deze blog bespreken we 10 specifieke vragen die u kunt stellen om te ontdekken wat er werkelijk gebeurt met het voorraadplanning- en vraagprognosebeleid in uw bedrijf. We beschrijven de typische antwoorden die worden gegeven wanneer een prognose-/inventarisplanningsbeleid niet echt bestaat, leggen uit hoe deze antwoorden moeten worden geïnterpreteerd en geven duidelijk advies over wat u eraan kunt doen.

Het probleem met bochten

Het probleem met bochten

Tijdens onze reizen door de industriële scene merken we dat veel bedrijven meer aandacht besteden aan inventarisatiebeurten dan zou moeten. We willen een deel van deze aandacht verleggen naar meer consequente prestatiestatistieken.

De plaag van scheefheid

De plaag van scheefheid

Demand planners hebben te maken met meerdere problemen om hun werk gedaan te krijgen. Een daarvan is de irritatie van intermittency. Het "nu zie je het, nu niet meer" karakter van intermitterende vraag, met zijn zware mix van nulwaarden, dwingt het gebruik van geavanceerde statistische methoden, zoals het gepatenteerde Markov Bootstrap-algoritme van Smart Software. Maar zelfs binnen het duistere rijk van de intermitterende vraag zijn er moeilijkheidsgraden: planners moeten verder omgaan met de potentieel kostbare Scourge of Skewness.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Gevangen in een perfecte storm, helpt SmartForecasts Rev-A-Shelf de crisis te doorstaan

      De slimme voorspeller

      Best practices nastreven op het gebied van vraagplanning, prognoses en voorraadoptimalisatie

      Heeft uw uitgebreide toeleveringsketen last van extreme seizoensvariabiliteit? Vormt deze situatie een uitdaging voor uw vermogen om te voldoen aan de serviceniveauverplichtingen aan uw klanten? Ik heb hiermee geworsteld bij Rev-A-Shelf, waarbij ik me bezig hield met ongebruikelijke omstandigheden die zijn gecreëerd door Chinees Nieuwjaar en andere wereldwijde evenementen, en ik wil graag de ervaring en een paar dingen die ik onderweg heb geleerd delen.

      Laat me eerst onze situatie uitleggen. We importeren 60% van de onderdelen die we gebruiken om onze keuken- en badaccessoires te bouwen uit China en Europa. Het grootste deel van het jaar waren we in staat om onze voorraadbehoeften te plannen met behulp van een op spreadsheets gebaseerde min/max-aanpak. Maar niet tijdens Chinees Nieuwjaar, dat de grootste jaarlijkse bevolkingsmigratie van de planeet veroorzaakt. Chinees Nieuwjaar legt de productie tot twee maanden stil, wat een aanzienlijk leveringsrisico met zich meebrengt terwijl we ernaar streven om onze driedaagse orderafhandelingsverplichting na te komen.

      We hebben ons probleem opgelost door statistiek te introduceren eis voorspelling met de flexibiliteit om indien nodig doorlooptijden te verlengen, de mogelijkheid om op betrouwbare wijze veiligheidsvoorraden aan te leggen die onze vereiste serviceniveaus bereiken en een continu rapportagesysteem dat iedereen precies laat weten waar we aan toe zijn. Voor succes was echter veel meer nodig dan een nieuw stuk software. We moesten de manier veranderen waarop we naar de toekomstige vraag, het aanbodrisico en de veiligheidsvoorraad kijken. Hier zijn een paar belangrijke dingen die we hebben gedaan die het verschil hebben gemaakt.

      Stakeholdereducatie en buy-in

      Ongeacht het project is het altijd het beste om de buy-in van alle belanghebbenden in te schakelen. We wisten dat we iets moesten doen om ons probleem op te lossen, maar er was zeker weerstand. Senior managers hadden bijvoorbeeld een gezond wantrouwen tegen software ontwikkeld en vroegen zich af of vraagvoorspellingssoftware zou kunnen helpen. Onze inkopers hadden hun eigen perspectieven en inkoopmethoden ontwikkeld en voelden zich persoonlijk in gevaar toen we nieuwe benaderingen overwoog.

      Mensen kwamen langs toen ze een gemeenschappelijk begrip van het probleem ontwikkelden en hoe we het zouden aanpakken. Onderwijs was een groot deel van de oplossing. We hebben uitgelegd hoe prognoses werken en de belangrijkste factoren die we allemaal moeten begrijpen: hoe trends te analyseren, hoe 'wat als'-scenario's te gebruiken, de impact van veranderende doorlooptijden, hoe serviceniveaus te relateren aan leveringsrisico en veiligheidsvoorraad en belangrijke prestatie-indicatoren zoals voorraad draait. Door dit proces samen te doorlopen, werden we allemaal belanghebbenden bij de oplossing.

      Gebruik de juiste software

      Wanneer u veel onderdeelnummers en enige vorm van vraag- of aanbodvariabiliteit heeft, kunt u gewoon niet effectief voorspellen met een spreadsheet. Met ons min/max-voorspellingssysteem waren we van plan een gemiddelde te nemen, en het werkte niet. Gemiddeld gebruik heeft inherente gebreken voor planningsdoeleinden - het is altijd achterom kijken!

      U hebt software nodig die vooruitkijkt, seizoenspatronen herkent en u in staat stelt te bepalen hoeveel voorraad u nodig heeft om aan de vereiste serviceniveaus te voldoen gedurende verschillende doorlooptijden.

      Processen verfijnen

      Als de oude manieren niet werken, moet je openstaan voor het aanpassen van je aannames. Denk minder na over waar je bent geweest en meer over waar je wilt zijn. Bekijk uw doorlooptijden en plan uw gewenste serviceniveau in. De geschiedenis van vorig jaar is misschien niet de beste voorspeller van de vraag van dit jaar. Dezelfde prognosehorizon is mogelijk niet geschikt voor alle producten of een bepaalde tijd van het jaar.

      Maak de prognose uitvoerbaar

      Het is niet voldoende om een nauwkeurige prognose en geschatte voorraadniveaus te produceren. Je moet een manier ontwikkelen om de informatie bruikbaar te maken voor degenen die ermee belast zijn. We hebben een reeks rapporten ontwikkeld waarmee kopers betere prognose- en veiligheidsvoorraadinformatie konden gebruiken. Nu, aan het einde van elke maand, produceren we een prognoserapport dat een duidelijk beeld geeft van de huidige voorraad, veiligheidsvoorraad, gebruik in het verleden, voorspeld gebruik, inkomende leveringen (PO's) en aanbevolen bestelhoeveelheden.

      Resultaten valideren

      U kunt, en dat hebben we gedaan, onze nieuwe methoden testen aan de hand van onze eigen vraaggeschiedenis. Toch kan een gezaghebbende buitenstaander acceptatie gemakkelijker maken. We hebben een onderzoek laten uitvoeren door een professor aan de Louisville University's College of Business, die een van haar afgestudeerde studenten aan het werk zette. Door hen konden we versterken wat we zagen gebeuren met onze resultaten, en we voelden ons comfortabel dat we op de goede weg waren.

      Al deze factoren hielpen Rev-A-Shelf om het vraagplanningsproces met groot succes te transformeren. Vandaag overtreffen we onze doelstellingen op het gebied van serviceniveau en ons opvullingspercentage, gebaseerd op een driedaagse verzendcyclus, vertoont een gestage verbetering en vertoont een stijgende trend. Over het algemeen zijn de eenheden op voorraad gelijk gebleven terwijl ze een omzetstijging van 13% ondersteunden

      John Engelhardt is momenteel Director of Purchasing and Asian Operations voor Rev-a-Shelf, LLC in Louisville, KY. Hij heeft verschillende managementfuncties bekleed, zowel bij particuliere bedrijven als bij publieke organisaties. Bij Rev-A-Shelf bekleedde hij de functie van International Sales Manager en Director of Sales Support voordat hij zijn huidige functie op zich nam. Hij is te bereiken op johne op rev-a-shelf dot com.

       

       

      Laat een reactie achter

      gerelateerde berichten

      Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

      Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

      In deze blog bespreken we 10 specifieke vragen die u kunt stellen om te ontdekken wat er werkelijk gebeurt met het voorraadplanning- en vraagprognosebeleid in uw bedrijf. We beschrijven de typische antwoorden die worden gegeven wanneer een prognose-/inventarisplanningsbeleid niet echt bestaat, leggen uit hoe deze antwoorden moeten worden geïnterpreteerd en geven duidelijk advies over wat u eraan kunt doen.

      Het probleem met bochten

      Het probleem met bochten

      Tijdens onze reizen door de industriële scene merken we dat veel bedrijven meer aandacht besteden aan inventarisatiebeurten dan zou moeten. We willen een deel van deze aandacht verleggen naar meer consequente prestatiestatistieken.

      De plaag van scheefheid

      De plaag van scheefheid

      Demand planners hebben te maken met meerdere problemen om hun werk gedaan te krijgen. Een daarvan is de irritatie van intermittency. Het "nu zie je het, nu niet meer" karakter van intermitterende vraag, met zijn zware mix van nulwaarden, dwingt het gebruik van geavanceerde statistische methoden, zoals het gepatenteerde Markov Bootstrap-algoritme van Smart Software. Maar zelfs binnen het duistere rijk van de intermitterende vraag zijn er moeilijkheidsgraden: planners moeten verder omgaan met de potentieel kostbare Scourge of Skewness.

      recente berichten

      • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          De plaag van scheefheid

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Demand planners hebben te maken met meerdere problemen om hun werk gedaan te krijgen. Een daarvan is de irritatie van intermittency. Het "nu zie je het, nu niet meer" karakter van intermitterende vraag, met zijn zware mix van nulwaarden, dwingt het gebruik van geavanceerde statistische methoden, zoals het gepatenteerde Markov Bootstrap-algoritme van Smart Software. Maar zelfs binnen het duistere rijk van de intermitterende vraag zijn er moeilijkheidsgraden: planners moeten verder omgaan met de potentieel kostbare Scourge of Skewness.

          Scheefheid is een statistische term die de mate beschrijft waarin een vraagverdeling niet symmetrisch is. De klassieke (en grotendeels mythische) "klokvormige" curve is symmetrisch, met gelijke kansen dat de vraag in elke periode onder of boven het gemiddelde valt. Een scheve verdeling daarentegen is scheef, waarbij de meeste waarden boven of onder het gemiddelde vallen. In de meeste gevallen zijn de vraaggegevens positief scheef, met een lange staart van waarden die zich uitstrekken naar het hogere uiteinde van de vraagschaal.

          Staafdiagrammen van twee tijdreeksen
          Afbeelding 1: Twee intermitterende vraagreeksen met verschillende scheefheidsniveaus
          Figuur 1 toont twee tijdreeksen van 60 maanden intermitterende vraag. Beide zijn positief scheef, maar de gegevens in het onderste paneel zijn meer scheef. Beide series hebben bijna dezelfde gemiddelde vraag, maar de bovenste is een mix van 0-en, 1-en en 2-en, terwijl de onderste een mix is van 0-en, 1-en en 4-en.

          Wat positieve scheefheid een probleem maakt, is dat het de opvullingsgraad van een item verlaagt. Opvullingspercentage is belangrijk voorraadbeheer prestatiemaatstaf. Het meet het percentage van de vraag waaraan onmiddellijk wordt voldaan vanuit de voorhanden voorraad. Eventuele nabestellingen of verloren verkopen verminderen het opvullingspercentage (naast het verspillen van de goodwill van de klant).

          Het opvullingspercentage is een aanvulling op de andere belangrijke prestatiemaatstaf: serviceniveau. Serviceniveau meet de kans dat een artikel niet op voorraad is tijdens de doorlooptijd van de aanvulling. De doorlooptijd wordt gemeten vanaf het moment dat de voorraad daalt tot of onder het bestelpunt van een artikel, waardoor een aanvullingsorder wordt geactiveerd, tot de aankomst van de vervangende voorraad.

          Voorraadbeheersoftware, zoals SmartForecasts van Smart Software, kan vraagpatronen analyseren om het bestelpunt te berekenen dat nodig is om een bepaald serviceniveau te bereiken. Om een 95%-serviceniveau te bereiken voor het artikel in het bovenste paneel van Afbeelding 1, uitgaande van een doorlooptijd van 1 maand, is het vereiste bestelpunt 3; voor het onderste item is het bestelpunt 1. (Het eerste bestelpunt is 3 om rekening te houden met de duidelijke mogelijkheid dat toekomstige vraagwaarden hoger zullen zijn dan de grootste waarden, 2, die tot nu toe zijn waargenomen. In feite zijn waarden zo groot als 8 mogelijk .) Zie afbeelding 2.

          Histogrammen van twee tijdreeksen
          Figuur 2: Verdelingen van de totale vraag gedurende een doorlooptijd van aanvulling van 1 maand
          (Afbeelding 2 geeft de voorspelde verdeling van de vraag over de doorlooptijd weer. De groene balken vertegenwoordigen de waarschijnlijkheid dat een bepaalde vraag zich zal voordoen.)

          Met het vereiste bestelpunt van 3 eenheden is het opvullingspercentage voor het minder scheve artikel een gezonde 93%. Het opvullingspercentage voor het meer scheve item is echter een verontrustende 44%, hoewel ook dit item een serviceniveau van 95% behaalt. Dit is de plaag van scheefheid.

          De verklaring voor het verschil in opvullingspercentages is de mate van scheefheid. Het bestelpunt voor het meer scheve artikel is 1 eenheid. Het hebben van 1 eenheid bij de start van de doorlooptijd is voldoende om 95% van de aanvragen die binnenkomen tijdens een doorlooptijd van 1 maand te behandelen. De maandelijkse vraag kan echter oplopen tot meer dan 15 eenheden, dus wanneer de meer scheve eenheid op voorraad is, zal deze "grote voorraad opraken", waardoor een veel groter aantal eenheden verloren gaat.

          De meeste vraagplanners zouden er trots op zijn om een 95%-serviceniveau en een 93%-vulpercentage te behalen. De meesten zouden verontrust en verbaasd zijn door het 95%-serviceniveau te bereiken, maar slechts een 44%-vulpercentage. Deze gedeeltelijke storing zou niet hun schuld zijn: het kan rechtstreeks worden herleid tot de vervelende scheefheid in de verdeling van maandelijkse vraagwaarden.

          Er is geen pijnloze oplossing voor dit probleem. De enige manier om het opvullingspercentage in deze situatie te verhogen, is door het serviceniveau te verhogen, wat op zijn beurt het bestelpunt zal verhogen, wat uiteindelijk zowel de frequentie van stockouts als hun omvang zal verminderen wanneer ze zich voordoen. In dit voorbeeld zal het verhogen van het bestelpunt van 1 eenheid naar 3 eenheden een 99%-serviceniveau bereiken en het opvullingspercentage verhogen tot een respectabele, maar niet uitstekende, 84%. Deze verbetering zou ten koste gaan van in wezen een verdrievoudiging van de dollars die vastzitten aan het beheer van dit meer scheve item.

          Thomas Willemain, PhD, was medeoprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselear Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

          Laat een reactie achter

          gerelateerde berichten

          Beheer van de inventaris van gepromote artikelen

          Beheer van de inventaris van gepromote artikelen

          In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

          Vraagvariabiliteit beheren

          Vraagvariabiliteit beheren

          Iedereen die het werk doet, weet dat het beheren van voorraden stressvol kan zijn. Veelvoorkomende stressfactoren zijn: Klanten met "speciale" verzoeken, IT-afdelingen met andere prioriteiten, wankele ERP-systemen die draaien op onnauwkeurige gegevens, grondstoftekorten, leveranciers met lange doorlooptijden in verre landen waar de productie vaak stopt om verschillende redenen en meer. Deze nota gaat in op één specifieke en altijd aanwezige bron van stress: variabiliteit in de vraag.

          recente berichten

          • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

              Te veel of te weinig voorraad?

              De slimme voorspeller

              Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Weet u welke artikelen te veel of te weinig voorraad hebben? Wat als je het wist? Hoe zou u overtollige voorraden terugdringen en tegelijkertijd een concurrerend serviceniveau garanderen? Zou u de stockouts kunnen verminderen zonder een onbetaalbare voorraadverhoging? Welke invloed hebben deze wijzigingen op serviceniveaus, kosten en beurten - voor individuele artikelen, groepen artikelen en in het algemeen?

              De meeste bedrijven weten dat ze te veel of te weinig voorraad hebben, maar missen een belangrijk ingrediënt voor het optimaliseren van de voorraad: Service Level-Driven Demand Planning. Om actie te kunnen ondernemen, moet u weten hoeveel voorraad er nodig is om te voldoen aan het serviceniveau dat u nodig heeft. Meer fundamenteel is dat u het specifieke serviceniveau moet kennen dat voortvloeit uit uw huidige voorraadbeleid, de kloof die moet worden gedicht en de financiële implicaties ervan.

              Veel organisaties, vooral die met intermitterende vraag, vinden dit een buitengewoon uitdagend proces van vallen en opstaan.

              De overstap naar een op serviceniveau gebaseerde benadering zal deze uitdaging overwinnen en ervoor zorgen dat het opnieuw in evenwicht brengen van de voorraad de serviceniveauprestaties tegen lagere kosten verbetert. Begin met de meest nauwkeurige vraagvoorspelling die mogelijk is, kalibreer voor prognoserisico en bepaal vervolgens uw optimale voorraadpositie. In een recent webinar demonstreerde ik Service Level-Driven Demand Planning en hoe SmartForecasts kunnen worden gebruikt om dit proces aan te sturen:

              1. Meet de serviceniveaus die worden bereikt bij de huidige voorraadniveaus en met uw huidige voorraadbeleid.
              2. Identificeer items die hoge serviceniveaus zullen bereiken (98%+) maar tegen onbetaalbaar hoge kosten.
              3. Identificeer artikelen die een hoog risico op voorraad hebben (serviceniveaus < 75%).
              4. Voer meerdere wat-als-scenario's uit op basis van een verschillende prioriteitstelling van serviceniveaus per artikel of artikelgroepen. Kies het scenario dat financiële beperkingen optimaliseert met servicedoelstellingen.
              5. Kwantificeer geldbesparingen door het verminderen van overvoorraden en de kosten om de voorraad te vergroten wanneer de serviceniveaus onaanvaardbaar laag zijn.
              6. Onderneem actie om nieuwe op serviceniveau gebaseerde bestelpunten, bestelhoeveelheden en voorraadniveaus vast te stellen om uw servicedoelen en budget te halen.

              Om de herhaling van het webinar te bekijken, alstublieft Klik hier en vul het registratieverzoek in.

              Gregory Hartunian is President van Smart Software en lid van de Raad van Bestuur. Hij is afgestudeerd aan de FW Olin School for Business aan het Babson College en was voorheen Vice President, Sales and Operations.

              Laat een reactie achter

              gerelateerde berichten

              Geen Resultaten Gevonden

              De pagina die u zocht kon niet gevonden worden. Probeer uw zoekopdracht te verfijnen of gebruik de bovenstaande navigatie om deze post te vinden.

              recente berichten

              • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
              • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
              • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
                Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
              • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
                Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
              • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
                Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                  In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                  De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                  Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                  In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

                  Omgaan met extreme supply chain-variaties bij Rev-A-Shelf

                  De slimme voorspeller

                  Het nastreven van best practices op het gebied van vraagplanning,

                  prognoses en voorraadoptimalisatie

                  Heeft uw uitgebreide toeleveringsketen last van extreme seizoensvariabiliteit? Vormt deze situatie een uitdaging voor uw vermogen om te voldoen aan de serviceniveauverplichtingen aan uw klanten? Ik heb hiermee geworsteld bij Rev-A-Shelf, waarbij ik me bezig hield met ongebruikelijke omstandigheden die zijn gecreëerd door Chinees Nieuwjaar en andere wereldwijde evenementen, en ik wil graag de ervaring en een paar dingen die ik onderweg heb geleerd delen.

                  Laat me eerst onze situatie uitleggen. We importeren 60% van de onderdelen die we gebruiken om onze keuken- en badaccessoires te bouwen uit China en Europa. Het grootste deel van het jaar waren we in staat om onze voorraadbehoeften te plannen met behulp van een op spreadsheets gebaseerde min/max-aanpak. Maar niet tijdens Chinees Nieuwjaar, dat de grootste jaarlijkse bevolkingsmigratie van de planeet veroorzaakt. Chinees Nieuwjaar legt de productie tot twee maanden stil, wat een aanzienlijk leveringsrisico met zich meebrengt terwijl we ernaar streven om onze driedaagse orderafhandelingsverplichting na te komen.

                  We hebben ons probleem opgelost door statistische vraagprognoses te introduceren met de flexibiliteit om doorlooptijden te verlengen indien nodig, de mogelijkheid om op betrouwbare wijze veiligheidsvoorraden aan te leggen die onze vereiste serviceniveaus bereiken en een continu rapportagesysteem waarmee iedereen precies weet waar we aan toe zijn. Voor succes was echter veel meer nodig dan een nieuw stuk software. We moesten de manier veranderen waarop we naar de toekomstige vraag, het aanbodrisico en de veiligheidsvoorraad kijken. Hier zijn een paar belangrijke dingen die we hebben gedaan die het verschil hebben gemaakt.

                  Stakeholdereducatie en buy-in

                  Ongeacht het project is het altijd het beste om de buy-in van alle belanghebbenden in te schakelen. We wisten dat we iets moesten doen om ons probleem op te lossen, maar er was zeker weerstand. Senior managers hadden bijvoorbeeld een gezond wantrouwen tegen software ontwikkeld en vroegen zich af of vraagvoorspellingssoftware zou kunnen helpen. Onze inkopers hadden hun eigen perspectieven en inkoopmethoden ontwikkeld en voelden zich persoonlijk in gevaar toen we nieuwe benaderingen overwoog.

                  Mensen kwamen langs toen ze een gemeenschappelijk begrip van het probleem ontwikkelden en hoe we het zouden aanpakken. Onderwijs was een groot deel van de oplossing. We hebben uitgelegd hoe prognoses werken en de belangrijkste factoren die we allemaal moeten begrijpen: hoe trends te analyseren, hoe 'wat als'-scenario's te gebruiken, de impact van veranderende doorlooptijden, hoe serviceniveaus te relateren aan leveringsrisico en veiligheidsvoorraad en belangrijke prestatie-indicatoren zoals voorraad draait. Door dit proces samen te doorlopen, werden we allemaal belanghebbenden bij de oplossing.

                  Gebruik de juiste software

                  Wanneer u veel onderdeelnummers en enige vorm van vraag- of aanbodvariabiliteit heeft, kunt u gewoon niet effectief voorspellen met een spreadsheet. Met ons min/max-voorspellingssysteem waren we van plan een gemiddelde te nemen, en het werkte niet. Gemiddeld gebruik heeft inherente gebreken voor planningsdoeleinden - het is altijd achterom kijken!

                  U hebt software nodig die vooruitkijkt, seizoenspatronen herkent en u in staat stelt te bepalen hoeveel voorraad u nodig heeft om aan de vereiste serviceniveaus te voldoen gedurende verschillende doorlooptijden.

                  Processen verfijnen

                  Als de oude manieren niet werken, moet je openstaan voor het aanpassen van je aannames. Denk minder na over waar je bent geweest en meer over waar je wilt zijn. Bekijk uw doorlooptijden en plan uw gewenste serviceniveau in. De geschiedenis van vorig jaar is misschien niet de beste voorspeller van de vraag van dit jaar. Dezelfde prognosehorizon is mogelijk niet geschikt voor alle producten of een bepaalde tijd van het jaar.

                  Maak de prognose uitvoerbaar

                  Het is niet voldoende om een nauwkeurige prognose en geschatte voorraadniveaus te produceren. Je moet een manier ontwikkelen om de informatie bruikbaar te maken voor degenen die ermee belast zijn. We hebben een reeks rapporten ontwikkeld waarmee kopers betere prognose- en veiligheidsvoorraadinformatie konden gebruiken. Nu, aan het einde van elke maand, produceren we een prognoserapport dat een duidelijk beeld geeft van de huidige voorraad, veiligheidsvoorraad, gebruik in het verleden, voorspeld gebruik, inkomende leveringen (PO's) en aanbevolen bestelhoeveelheden.

                  Resultaten valideren

                  U kunt, en dat hebben we gedaan, onze nieuwe methoden testen aan de hand van onze eigen vraaggeschiedenis. Toch kan een gezaghebbende buitenstaander acceptatie gemakkelijker maken. We hebben een onderzoek laten uitvoeren door een professor aan de Louisville University's College of Business, die een van haar afgestudeerde studenten aan het werk zette. Door hen konden we versterken wat we zagen gebeuren met onze resultaten, en we voelden ons comfortabel dat we op de goede weg waren.

                  Al deze factoren hielpen Rev-A-Shelf om zijn vraagplanningsproces met groot succes te transformeren. Vandaag overtreffen we onze doelstellingen op het gebied van serviceniveau en onze opvullingsgraad, gebaseerd op een driedaagse scheepscyclus, vertoont een gestage verbetering en vertoont een stijgende lijn. Over het algemeen zijn de eenheden op voorraad gelijk gebleven, terwijl ze een stijging van de verkoop van 13% ondersteunden.

                  John Engelhardt is momenteel Director of Purchasing and Asian Operations voor Rev-a-Shelf, LLC in Louisville, KY. Hij heeft verschillende managementfuncties bekleed, zowel bij particuliere bedrijven als bij publieke organisaties. Bij Rev-A-Shelf bekleedde hij de functie van International Sales Manager en Director of Sales Support voordat hij zijn huidige functie op zich nam. Hij is te bereiken op johne op rev-a-shelf dot com.

                  Laat een reactie achter

                  gerelateerde berichten

                  Geen Resultaten Gevonden

                  De pagina die u zocht kon niet gevonden worden. Probeer uw zoekopdracht te verfijnen of gebruik de bovenstaande navigatie om deze post te vinden.

                  recente berichten

                  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
                  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
                    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
                  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
                    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
                  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
                    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]