Kan willekeur een bondgenoot zijn in de voorspellingsstrijd?

Feynmans perspectief belicht onze reis: “In haar pogingen om zoveel mogelijk over de natuur te leren, heeft de moderne natuurkunde ontdekt dat bepaalde dingen nooit met zekerheid ‘gekend’ kunnen worden. Veel van onze kennis moet altijd onzeker blijven. Het meeste wat we kunnen weten is in termen van waarschijnlijkheden.” – Richard Feynman, The Feynman Lectures on Physics.

Wanneer we de complexe wereld van de logistiek proberen te begrijpen, speelt willekeur een cruciale rol. Dit introduceert een interessante paradox: in een realiteit waarin precisie en zekerheid worden gewaardeerd, zou de onvoorspelbare aard van vraag en aanbod daadwerkelijk als een strategische bondgenoot kunnen dienen?

De zoektocht naar nauwkeurige voorspellingen is niet alleen een academische oefening; het is een cruciaal onderdeel van operationeel succes in tal van sectoren. Voor vraagplanners die moeten anticiperen op de productvraag zijn de gevolgen van het goed of fout doen van de vraag van cruciaal belang. Daarom is het herkennen en benutten van de kracht van willekeur niet slechts een theoretische oefening; het is een noodzaak voor veerkracht en aanpassingsvermogen in een steeds veranderende omgeving.

Onzekerheid omarmen: dynamische, stochastische en Monte Carlo-methoden

Dynamische modellering: De zoektocht naar absolute precisie in voorspellingen negeert de intrinsieke onvoorspelbaarheid van de wereld. Traditionele voorspellingsmethoden, met hun rigide raamwerken, schieten tekort in het accommoderen van de dynamiek van verschijnselen in de echte wereld. Door onzekerheid te omarmen, kunnen we overgaan op flexibelere en dynamischere modellen waarin willekeur als fundamentele component is opgenomen. In tegenstelling tot hun rigide voorgangers zijn deze modellen ontworpen om te evolueren als reactie op nieuwe gegevens, waardoor veerkracht en aanpassingsvermogen worden gegarandeerd. Deze paradigmaverschuiving van een deterministische naar een probabilistische benadering stelt organisaties in staat met meer vertrouwen door onzekerheid te navigeren en weloverwogen beslissingen te nemen, zelfs in volatiele omgevingen.

Stochastische modellering leidt voorspellers door de mist van onvoorspelbaarheid met de principes van waarschijnlijkheid. In plaats van te proberen willekeur te elimineren, omarmen stochastische modellen het. Deze modellen schuwen het idee van een enkelvoudige, vooraf bepaalde toekomst, maar presenteren in plaats daarvan een reeks mogelijke uitkomsten, elk met een geschatte waarschijnlijkheid. Deze benadering biedt een genuanceerder en realistischer beeld van de toekomst, waarbij de inherente variabiliteit van systemen en processen wordt erkend. Door een spectrum van potentiële toekomsten in kaart te brengen, voorziet stochastische modellering besluitvormers van een alomvattend inzicht in onzekerheid, waardoor strategische planning mogelijk is die zowel geïnformeerd als flexibel is.

Vernoemd naar het historische centrum van toeval en fortuin, maken Monte Carlo-simulaties gebruik van de kracht van willekeur om het uitgestrekte landschap van mogelijke uitkomsten te verkennen. Deze techniek omvat het genereren van duizenden, zo niet miljoenen, scenario's door middel van willekeurige steekproeven, waarbij elk scenario een ander toekomstbeeld schetst, gebaseerd op de inherente onzekerheden van de echte wereld. Beslissers kunnen, gewapend met inzichten uit Monte Carlo-simulaties, de reikwijdte van de mogelijke gevolgen van hun beslissingen inschatten, waardoor het een instrument van onschatbare waarde is voor risicobeoordeling en strategische planning in onzekere omgevingen.

Successen in de echte wereld: het benutten van willekeur

De strategie om willekeur in de prognoses te integreren is in diverse sectoren van onschatbare waarde gebleken. Grote beleggingsondernemingen en banken vertrouwen bijvoorbeeld voortdurend op stochastische modellen om het volatiele gedrag van de aandelenmarkt het hoofd te bieden. Een opmerkelijk voorbeeld is de manier waarop hedgefondsen deze modellen gebruiken om prijsbewegingen te voorspellen en risico's te beheren, wat leidt tot meer strategische beleggingskeuzes.

Op dezelfde manier vertrouwen veel bedrijven op het gebied van supply chain management op Monte Carlo-simulaties om de onvoorspelbaarheid van de vraag aan te pakken, vooral tijdens piekseizoenen zoals de feestdagen. Door verschillende scenario's te simuleren, kunnen ze zich op een reeks uitkomsten voorbereiden en ervoor zorgen dat ze over voldoende voorraadniveaus beschikken zonder dat ze te veel middelen inzetten. Deze aanpak minimaliseert het risico op voorraadtekorten en overtollige voorraad.

Deze successen uit de praktijk benadrukken de waarde van het integreren van willekeur in voorspellingsinspanningen. In plaats van de tegenstander te zijn die vaak wordt gezien, ontpopt willekeur zich als een onmisbare bondgenoot in het ingewikkelde ballet van voorspellingen. Door methoden te hanteren die rekening houden met de inherente onzekerheid van de toekomst – ondersteund door geavanceerde tools als Smart IP&O – kunnen organisaties met vertrouwen en flexibiliteit door het onvoorspelbare navigeren. In het grote geheel van voorspellingen kan het dus verstandig zijn om het idee te omarmen dat we weliswaar geen controle hebben over de worp van de dobbelstenen, maar dat we er wel een strategie omheen kunnen bedenken.

 

 

 

Het gemiddelde is niet het antwoord

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Fluctuaties in de toeleveringsketen van een voorraad zijn onvermijdelijk. Willekeur, die een bron van verwarring en frustratie kan zijn, garandeert dit. Een schip met goederen uit China kan vertraging oplopen door een storm op zee. Een plotselinge toename van de vraag op een dag kan de voorraad in één dag wegvagen, waardoor u niet meer aan de vraag van de volgende dag kunt voldoen. Willekeur zorgt voor fricties die het moeilijk maken om je werk te doen.

Op het eerste gezicht lijkt het soms het beste om op willekeur te reageren met de struisvogelbenadering: kop in het zand. U kunt genoegen nemen met een voorspelling en ervan uitgaan dat de voorspelling altijd klopt. De fout in die benadering is dat het statistische methoden negeert die ons in staat stellen gebruik te maken van een schat aan kennis over onze kennis zelf - hoeveel vertrouwen we kunnen hebben in onze voorspellingen en met welke brede mogelijkheden we worden geconfronteerd. De efficiënte aanpak van de problemen die voortkomen uit willekeur is niet om onzekerheid te negeren, maar om deze met open ogen te omarmen.

Als een fundamenteel principe van Smart Software's benadering van voorspelling, zullen we u altijd een beoordeling geven van de mate van onzekerheid in prognoses. Als u niets meer verwacht dan een absoluut cijfer - de vraag naar widgets in februari zal 120 eenheden zijn - kunt u het toegevoegde element van onzekerheid afdoen als negatief, of het vertrouwen verliezen in een voorspelling waarvan u had gehoopt dat deze definitief zou zijn. Maar we pleiten voor wat wij beschouwen als de benadering voor volwassenen; u moet weten wat u riskeert wanneer u zich aan een prognose houdt en uw besluitvorming daarop baseert.

Uw prognoses kunnen grote gevolgen hebben die verder gaan dan voorraadniveaus. Ze kunnen uw behoeften aan grondstoffen of personeelsniveau bepalen - prognoses zijn de drijvende kracht achter veel belangrijke beslissingen over de toewijzing van middelen. Als u te veel vertrouwen heeft in de meest waarschijnlijke uitkomst, zonder ook specifiek te overwegen hoe waarschijnlijk het is, begrijpt u de risico's waarmee u wordt geconfronteerd niet echt en kunt u uzelf in een precaire positie brengen.

De noodzaak om volledig geïnformeerde beslissingen te nemen, dwingt ons om in een prognose het plus/minus bereik van resultaten te zien met een bepaalde waarschijnlijkheid van voorkomen. In het specifieke geval van prognoses die in voorraadsystemen gaan, is dit een belangrijk onderdeel van het opzettelijk plannen voor onvoorziene gebeurtenissen. Zo bepaalt u niet alleen de voorraad die u moet aanhouden om aan de typische vraag te voldoen, maar ook de extra voorraad die u bij de hand moet hebben om de meest onverwachte uitkomsten op te vangen.

Dit belang neemt alleen maar toe wanneer u probeert een betrouwbare voorraad kritieke reserveonderdelen aan te houden. Tussen de kosten van het opslaan van extra inventaris en het rekening houden met de mate van betrouwbaarheid van uw prognoses, is er een balans die zich uitkristalliseert wanneer een vliegtuig dat u in de lucht nodig heeft aan de grond staat, omdat u geen vervanging voor een beschadigd onderdeel heeft.

(Terwijl het aanleggen van extra voorraad afhankelijk is van de bovenkant van het onzekerheidsbereik, wordt als de cashflow krap is, de onderkant van het bereik belangrijk. Treasury-minded gebruikers vinden waarde in deze andere kant van onzekerheid in scenario's waarin zelfs minimale overbevoorrading kan bijvoorbeeld meer een probleem zijn dan een gemiste verkoopkans. Betrouwbare informatie over de minst waarschijnlijke uitkomsten loont op dit moment.)

Inventaristheorie zegt dat je moet nadenken over de uiteinden van waarschijnlijke mogelijkheden en je moet voorbereiden om met meer scenario's om te gaan dan alleen wat het meest waarschijnlijk is. Willekeur is een realiteit die niet kan worden genegeerd. Het gemiddelde is niet het antwoord.

Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Dagelijkse vraagscenario's

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Leren van voorraadmodellen

Leren van voorraadmodellen

In deze videoblog wordt een cruciaal aspect van voorraadbeheer in de schijnwerpers gezet: de analyse en interpretatie van voorraadgegevens. De focus ligt specifiek op een dataset van een openbaar vervoersbedrijf met details over reserveonderdelen voor bussen.

De methoden voor voorspelling

De methoden voor voorspelling

Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all-proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd.

recente berichten

  • Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatieOnzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie
    In this blog, we will discuss today's fast-paced and unpredictable market and the constant challenges businesses face in managing their inventory and service levels efficiently. The main subject of this discussion, rooted in the concept of "Probabilistic Inventory Optimization," focuses on how modern technology can be leveraged to achieve optimal service and inventory targets amidst uncertainty. This approach not only addresses traditional inventory management issues but also offers a strategic edge in navigating the complexities of demand fluctuations and supply chain disruptions. […]
  • Dagelijkse vraagscenario's Smart 2Dagelijkse vraagscenario's
    In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën. […]
  • De kosten als u niets doet met uw voorraadplanningssystemenDe kosten van spreadsheetplanning
    Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën. […]
  • Leren van voorraadmodellen Software AILeren van voorraadmodellen
    In deze videoblog wordt een cruciaal aspect van voorraadbeheer in de schijnwerpers gezet: de analyse en interpretatie van voorraadgegevens. De focus ligt specifiek op een dataset van een openbaar vervoersbedrijf met details over reserveonderdelen voor bussen. […]
  • De methoden voor het voorspellen van softwareDe methoden voor voorspelling
    Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all-proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
    • Vraag naar reserveonderdelen voorspellen-een-ander-perspectief-voor-planning-service-onderdelenDe voorspelling is belangrijk, maar misschien niet zoals u denkt
      Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja. […]
    • Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraadWaarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien. […]
    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]