Las fluctuaciones en una cadena de suministro de inventario son inevitables. La aleatoriedad, que puede ser fuente de confusión y frustración, lo garantiza. Un barco que transporta mercancías desde China puede retrasarse debido a una tormenta en el mar. Un aumento repentino en la demanda un día puede acabar con el inventario en un solo día, dejándolo incapaz de satisfacer la demanda del día siguiente. La aleatoriedad crea fricciones que dificultan el trabajo.
A primera vista, a veces parece mejor responder al azar con el enfoque del avestruz: la cabeza enterrada en la arena. Puede establecer una predicción y proceder suponiendo que la predicción siempre será acertada. La falla en ese enfoque es que ignora los métodos estadísticos que nos permiten hacer uso de una gran cantidad de conocimiento sobre nuestro conocimiento en sí mismo: cuán seguros podemos estar en nuestras predicciones y qué amplitud de posibilidades enfrentamos. El enfoque eficiente para abordar los problemas que surgen de la aleatoriedad no es ignorar la incertidumbre, sino aceptarla con los ojos abiertos.
Como principio fundamental del enfoque de Smart Software para pronóstico, siempre le proporcionaremos una evaluación del nivel de incertidumbre en los pronósticos. Si no espera nada más que una cifra absoluta (la demanda de dispositivos en febrero será de 120 unidades), puede descartar el elemento adicional de incertidumbre como algo negativo o perder la fe en un pronóstico que esperaba que fuera definitivo. Pero defendemos lo que consideramos el enfoque adulto; necesita saber lo que está arriesgando cuando se compromete con un pronóstico y basa su toma de decisiones en él.
Sus pronósticos pueden tener grandes consecuencias que van más allá de los niveles de existencias de inventario. Pueden determinar sus necesidades de materias primas o los niveles de personal: los pronósticos impulsan muchas decisiones importantes de asignación de recursos. Si tiene demasiada fe en el resultado más probable, sin considerar específicamente qué tan probable es, realmente no está comprendiendo los riesgos que enfrenta y puede colocarse en una posición precaria.
La necesidad de tomar decisiones plenamente informadas nos obliga a ver, en un pronóstico, el rango positivo/negativo de resultados con cierta probabilidad de ocurrencia. En el caso específico de los pronósticos que van a los sistemas de inventario, esta es una parte importante de la planificación deliberada para las contingencias. Así es como determina no solo el inventario que necesita mantener para satisfacer la demanda típica, sino también el inventario adicional que necesita para hacer frente a la mayoría de los resultados inesperados.
Esta importancia solo aumenta cuando intenta mantener un almacén confiable de repuestos críticos. Entre el costo de almacenar inventario adicional y tener en cuenta el grado de confiabilidad en sus pronósticos, existe un equilibrio que cristaliza cuando un avión que necesita en el aire queda en tierra, porque no tiene el reemplazo de una pieza dañada.
(Si bien el almacenamiento de inventario adicional se basa en el extremo superior del rango de incertidumbre, si el flujo de efectivo es limitado, es el extremo inferior del rango el que se vuelve importante. Los usuarios con mentalidad de tesorería encuentran valor en este otro lado de la incertidumbre en escenarios donde incluso el mínimo exceso de existencias puede ser un problema mayor que una oportunidad de venta perdida, por ejemplo. La información confiable sobre los resultados probables más bajos vale la pena en este momento).
La teoría del inventario dice que debe pensar en los extremos exteriores de las posibilidades probables y prepararse para hacer frente a más escenarios además de lo que es más probable. La aleatoriedad es una realidad que no se puede ignorar. El promedio no es la respuesta.
Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselaer y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.
Artículos Relacionados

¿Confundido acerca de la IA y el aprendizaje automático?
¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

Cómo pronosticar los requisitos de inventario
La previsión de las necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de posible demanda futura. Los métodos tradicionales suelen basarse en curvas de demanda en forma de campana, pero esto no siempre es exacto. En este artículo profundizamos en las complejidades de esta práctica, especialmente cuando se trata de una demanda intermitente.

Seis mejores prácticas de planificación de la demanda en las que debería pensar dos veces
Cada campo, incluido el pronóstico, acumula sabiduría popular que eventualmente comienza a disfrazarse de “mejores prácticas”. Estas mejores prácticas suelen ser acertadas, al menos en parte, pero a menudo carecen de contexto y pueden no ser apropiadas para determinados clientes, industrias o situaciones comerciales. A menudo hay un problema, un “Sí, pero”. Esta nota trata sobre seis preceptos de pronóstico generalmente verdaderos que, sin embargo, tienen sus salvedades.