Een controle op prognoseautomatisering met de aandachtsindex

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Een nieuwe maatstaf die we de "Attentie-index" noemen, helpt voorspellers situaties te identificeren waarin "gegevens die zich slecht gedragen" automatische statistische voorspellingen kunnen verstoren (zie hiernaast). Het identificeert snel die items die waarschijnlijk de meeste kans hebben om prognoses te negeren, wat een efficiëntere manier biedt om zakelijke ervaring en andere menselijke intelligentie aan het werk te zetten om de nauwkeurigheid van prognoses te maximaliseren. Hoe werkt het?

Klassiek voorspellingsmethoden, zoals de verschillende smaken van exponentiële afvlakking en voortschrijdende gemiddelden, dringen aan op een sprong in het diepe. Ze vereisen dat we erop vertrouwen dat de huidige omstandigheden in de toekomst blijven bestaan. Als de huidige omstandigheden aanhouden, is het verstandig om deze extrapolatieve methoden te gebruiken - methoden die het huidige niveau, de trend, de seizoensgebondenheid en "ruis" van een tijdreeks kwantificeren en projecteren in de toekomst.

Maar als ze niet aanhouden, kunnen extrapolatieve methoden ons in de problemen brengen. Wat omhoog ging, kan ineens omlaag gaan. Wat vroeger rond het ene niveau was gecentreerd, kan plotseling naar een ander niveau springen. Of er kan iets heel vreemds gebeuren dat volledig uit het patroon is. In deze verrassende omstandigheden verslechtert de nauwkeurigheid van de prognoses, gaan voorraadberekeningen verkeerd en ontstaat er algemene onvrede.

Een manier om met dit probleem om te gaan, is te vertrouwen op complexere voorspellingsmodellen die rekening houden met externe factoren die de variabele bepalen die wordt voorspeld. Verkooppromoties proberen bijvoorbeeld kooppatronen te verstoren en in een positieve richting te bewegen, dus het opnemen van promotieactiviteiten in het prognoseproces kan de verkoopprognoses verbeteren. Soms kunnen macro-economische indicatoren, zoals het starten van huizen of inflatiepercentages, worden gebruikt om de nauwkeurigheid van prognoses te verbeteren. Maar complexere modellen vereisen meer gegevens en meer expertise, en ze zijn misschien niet bruikbaar voor sommige problemen, zoals het beheer van onderdelen of subsystemen, in plaats van afgewerkte goederen.

Als iemand vastloopt met behulp van eenvoudige extrapolatieve methoden, is het handig om een manier te hebben om items te markeren die moeilijk te voorspellen zijn. Dit is de Aandachtsindex. Zoals de naam al doet vermoeden, vereisen items die moeten worden voorspeld met een hoge Attention Index een speciale behandeling - op zijn minst een beoordeling en meestal een soort van prognoseaanpassing.

 

 

De Aandachtsindex detecteert drie soorten problemen:

Een uitbijter in de vraaggeschiedenis van een artikel.
Een abrupte verandering in het niveau van een item.
Een abrupte verandering in de trend van een artikel.
Met behulp van software zoals SmartForecasts™ kan de voorspeller omgaan met een uitbijter door deze te vervangen door een meer typische waarde.

Een abrupte verandering in niveau of trend kan worden verholpen door alle gegevens van vóór de "breuk" in het vraagpatroon uit de prognoseberekeningen weg te laten, ervan uitgaande dat het item is overgeschakeld naar een nieuw regime dat de oudere gegevens irrelevant maakt.

Hoewel geen enkele index perfect is, slaagt de Aandachtsindex er goed in om de aandacht te vestigen op de meest problematische vraaggeschiedenissen. Dit wordt aangetoond in de twee onderstaande figuren, die zijn gemaakt met gegevens van de M3 Competition, bekend in de prognosewereld. Figuur 1 toont de 20 items (van de 3.003 van de wedstrijd) met de hoogste Attention Index-scores; al deze hebben groteske uitschieters en breuken. Figuur 2 toont de 20 items met de laagste Attention Index-scores; de meeste (maar niet alle) items met lage scores hebben relatief goedaardige patronen.

Als u duizenden items te voorspellen heeft, zal de nieuwe Aandachtsindex zeer nuttig zijn om uw aandacht te richten op die items die het meest waarschijnlijk problematisch zijn.

Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

Dagelijkse vraagscenario's

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

De methoden voor voorspelling

De methoden voor voorspelling

Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all-proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd.

recente berichten

  • Simple Inventory Optimization is Good Except When It Isn’t FHDEenvoudig is goed, behalve als dat niet het geval is
    In this blog, we are steering the conversation towards the transformative potential of technology in inventory management. The discussion centers around the limitations of simple thinking in managing inventory control processes and the necessity of adopting systematic software solutions. […]
  • Gebruikmaken van Epicor Kinetic Planning BOM's met slimme IP&O om nauwkeurig HD te voorspellenGebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses
    In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt. […]
  • Twee multi-echelon inventarisoptimalisatie Neuraal netwerk AIDe volgende grens in Supply Chain Analytics
    Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor op het gebied van supply chain-analyse is. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong. […]
  • SMART sluit zich aan bij EPICOREpicor verwerft slimme software voor AI-aangedreven technologieën voor voorraadplanning en -optimalisatie
    De overname brengt twee bedrijven samen die nauw op elkaar zijn afgestemd om organisaties te helpen op het juiste moment tot de juiste inzichten te komen en actie te ondernemen om de bedrijfsprestaties te maximaliseren. . […]
  • Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatieOnzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie
    In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van 'probabilistische voorraadoptimalisatie', richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
    • Vraag naar reserveonderdelen voorspellen-een-ander-perspectief-voor-planning-service-onderdelenDe voorspelling is belangrijk, maar misschien niet zoals u denkt
      Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja. […]
    • Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraadWaarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien. […]
    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]