Voor te veel bedrijven wordt een cruciaal stukje data-feitenonderzoek – het meten van vraagonzekerheid – afgehandeld met eenvoudige maar onnauwkeurige vuistregels. Vraagplanners berekenen bijvoorbeeld vaak de veiligheidsvoorraad op basis van een door de gebruiker gedefinieerd veelvoud van de voorspelling of het historische gemiddelde. Of ze kunnen hun ERP configureren om meer te bestellen wanneer de beschikbare voorraad gedurende de doorlooptijd twee keer de gemiddelde vraag bereikt voor belangrijke artikelen en 1,5 keer voor minder belangrijke artikelen. Dit is een grote fout met kostbare gevolgen.
De keuze uit meerdere wordt uiteindelijk een raadspel. Dit komt omdat geen mens precies kan berekenen hoeveel voorraad hij moet opslaan, rekening houdend met alle onzekerheden. Veelvouden van de gemiddelde doorlooptijdvraag zijn eenvoudig te gebruiken, maar u kunt nooit weten of het gebruikte veelvoud te groot of te klein is totdat het te laat is. En als je het eenmaal weet, is alle informatie veranderd, dus je moet opnieuw raden en dan afwachten hoe de laatste gok uitpakt. Met elke nieuwe dag heeft u nieuwe vraag, nieuwe details over doorlooptijden en zijn de kosten mogelijk veranderd. De gok van gisteren, ongeacht hoe goed opgeleid, is vandaag niet langer relevant. Bij een goede voorraadplanning mag geen sprake zijn van giswerk op het gebied van inventaris en prognoses. Beslissingen moeten worden genomen op basis van onvolledige informatie, maar gissen is niet de juiste keuze.
Weten hoeveel u moet bufferen vereist een op feiten gebaseerde statistische analyse die nauwkeurig vragen kan beantwoorden zoals:
- Hoeveel extra voorraad is er nodig om de serviceniveaus van 5% te verbeteren
- Wat de klap op tijdige levering zal zijn als de voorraad met 5% wordt verminderd
- Welk serviceniveaudoel is het meest winstgevend.
- Hoe wordt het voorraadrisico beïnvloed door de willekeurige doorlooptijden waarmee we worden geconfronteerd?
Intuïtie kan deze vragen niet beantwoorden, strekt zich niet uit over duizenden onderdelen en heeft het vaak bij het verkeerde eind. Data, waarschijnlijkheidsberekeningen en moderne software zijn veel effectiever. Het is niet de weg naar duurzame uitmuntendheid.