De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Taiichi Ohno van Toyota wordt gecrediteerd voor het uitvinden van Just-In-Time (JIT) -productie in de jaren vijftig. JIT zorgt ervoor dat een fabrikant alleen produceert wat nodig is, alleen wanneer nodig en alleen in de benodigde hoeveelheid. Die innovatie heeft sindsdien grote gevolgen gehad, sommige goed, sommige minder.

Een recent artikel in de New York Times "How the World Ran out of Everything" beschrijft enkele van de "mindere" effecten. JIT heeft bijvoorbeeld de voorraadkosten zeer laag gehouden, waardoor het rendement op activa is verbeterd. Dit wordt op zijn beurt beloond door Wall Street, dus veel bedrijven hebben de afgelopen decennia hun voorraden drastisch verminderd. Gefocust als ze waren op financiën, negeerden veel bedrijven de risico's die inherent zijn aan het verminderen van voorraden tot het punt dat 'mager' begon te grenzen aan 'uitgemergeld'. Gecombineerd met de toegenomen globalisering en nieuwe risico's van leveringsonderbrekingen, zijn de voorraden in overvloed toegenomen.

Sommige industrieën zijn te ver gegaan, waardoor ze blootstaan aan disruptie. In een competitie om de laagste kosten te krijgen, hebben bedrijven onbedoeld hun risico geconcentreerd, onderbroken door tekorten aan grondstoffen of componenten en soms gedwongen om assemblagelijnen stop te zetten. Wall Street kijkt niet goed naar productiestops.

We weten allemaal dat willekeurige gebeurtenissen het probleem hebben vergroot. De eerste daarvan was de Covid-pandemie. Aangezien de pandemie de fabrieksactiviteiten heeft belemmerd en wanorde heeft veroorzaakt in de wereldwijde scheepvaart, worden veel economieën over de hele wereld gekweld door tekorten aan een enorm scala aan goederen – van computerchips tot hout tot kleding.

De schade wordt nog groter als er meer onverwachte dingen fout gaan. De blokkade van het Suezkanaal is een goed voorbeeld, het blokkeren van de belangrijkste handelsroute tussen Europa en Azië. Onlangs hebben cyberaanvallen een nieuwe laag van verstoring toegevoegd.

De reactie creëert zijn eigen problemen, net zoals de cyberaanval op de koloniale pijpleiding gastekorten veroorzaakte door paniekaankopen. Leveranciers beginnen langzamer dan normaal met het uitvoeren van bestellingen. Fabrikanten en distributeurs keren de koers om en vergroten hun voorraden en diversifiëren hun leveranciers om toekomstige voorraden te voorkomen. Het simpelweg uitbreiden van magazijnen biedt misschien niet de oplossing, en de noodzaak om te bepalen hoeveel voorraad moet worden aangehouden, wordt elke dag urgenter.Manager In Magazijn Met Voorraadbeheersoftware

Dus hoe kun je een real-world plan voor JIT-inventarisatie uitvoeren te midden van al deze risico's en onzekerheden? De basis van uw reactie zijn uw bedrijfsgegevens. Onzekerheid heeft twee bronnen: vraag en aanbod. Voor beide heb je de feiten nodig.

Maak aan de aanbodzijde gebruik van de gegevens die u heeft over recente doorlooptijden van leveranciers, die de huidige turbulentie weerspiegelen. Gebruik geen gemiddelde waarden als u kansverdelingen kunt gebruiken die het volledige bereik van onvoorziene gebeurtenissen weergeven. Overweeg deze vergelijking. Leverancier A voert nu op betrouwbare wijze bestellingen uit in precies 10 dagen. Leverancier B is ook gemiddeld 10 dagen maar doet het met een 78%/22% mix van 7 en 21 dagen. Zowel A als B hebben een gemiddelde aanvullingsvertraging van 10 dagen, maar de operationele resultaten die ze opleveren zullen heel verschillend zijn. U kunt dit alleen herkennen als u waarschijnlijkheidsmodellen van voorraadprestaties gebruikt.

Aan de vraagzijde gelden soortgelijke overwegingen. Ten eerste, erken dat er mogelijk een grote verschuiving heeft plaatsgevonden in de aard van de vraag naar artikelen (statistici noemen dit een "regimeverandering"), dus verwijder uit uw analyse alle gegevens die de "goede oude tijd" vertegenwoordigen. Stop dan weer met denken in termen van gemiddelden. Hoewel de gemiddelde vraag belangrijk is, is deze geen voldoende beschrijving van het probleem waarmee u wordt geconfronteerd. Even belangrijk is de volatiliteit van de vraag. Volatiliteit is de reden dat u in de eerste plaats voorraad aanhoudt. Als de vraag volledig voorspelbaar zou zijn, zou u geen stockouts of overtollige voorraad hebben. Net zoals u de volledige waarschijnlijkheidsverdeling van doorlooptijden voor bevoorrading moet schatten, hebt u de volledige verdeling van vraagwaarden nodig.

Zodra u het bereik van variabiliteit in zowel vraag als aanbod begrijpt, kunt u met probabilistische prognoses rekening houden met verstoringen en ongebruikelijke gebeurtenissen. Software zet uw gegevens on demand en doorlooptijden om in een groot aantal scenario's die aangeven hoe uw volgende planningsperiode eruit zou kunnen zien. Op basis van die scenario's kan de software bepalen hoe uw doelen het beste kunnen worden bereikt voor statistieken als voorraadkosten en voorraadpercentages. Met behulp van oplossingen zoals Smart Inventory Optimization plant u vol vertrouwen op basis van uw beoogde voorraadrisico met minimale voorraadkosten. U kunt ook overwegen om de oplossing optimale serviceniveaudoelen te laten voorschrijven door de kosten van extra voorraad versus voorraadkosten te beoordelen.

Bij voorraadplanning kunnen we, net als in de wetenschap, niet ontsnappen aan de realiteit van onzekerheid en de impact van ongewone gebeurtenissen. We moeten dienovereenkomstig plannen: met software voor voorraadoptimalisatie kunt u het serviceniveau met de laagste kosten bepalen. Dit creëert een coherente, bedrijfsbrede inspanning die inzicht in de huidige activiteiten combineert met wiskundig correcte beoordelingen van toekomstige risico's en omstandigheden.

Voorraadplanning is "interessanter" geworden en vereist een grotere mate van risicobewustzijn en wendbaarheid. De juiste software kan daarbij helpen.

 

Laat een reactie achter

gerelateerde berichten

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies.

Hoe gaat het met ons? KPI's en KPP's

Hoe gaat het met ons? KPI's en KPP's

Het dagelijkse voorraadbeheer kan u bezig houden. Maar je weet dat je af en toe je hoofd omhoog moet brengen om te zien waar je naartoe gaat. Daarvoor moet uw inventarissoftware u statistieken tonen – en niet slechts één, maar een volledige set statistieken of KPI's – Key Performance Indicators.

Verward over AI en Machine Learning?

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

recente berichten

  • Direct naar het brein van de baas - InventarisanalyseRechtstreeks naar het brein van de baas – voorraadanalyse en rapportage
    In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies. […]
  • U moet samenwerken met de algoritmen voor voorraadbeheerJe moet samenwerken met de algoritmen
    This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software. […]
  • Heroverweging van de nauwkeurigheid van prognoses, een verschuiving van nauwkeurigheid naar foutstatistiekenBeantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken
    Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie. […]
  • Het gebruik van belangrijke prestatievoorspellingen om het voorraadbeleid te plannen
    Ik kan me niet voorstellen dat ik een voorraadplanner ben op het gebied van reserveonderdelen, distributie of productie en dat ik veiligheidsvoorraden, bestelpunten en bestelsuggesties moet creëren zonder gebruik te maken van belangrijke prestatievoorspellingen van serviceniveaus, opvullingspercentages en voorraadkosten. […]
  • Elk voorspellingsmodel is goed waarvoor het is ontworpenElk voorspellingsmodel is goed waarvoor het is ontworpen
    Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]