De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Nu meer dan ooit

Voorraadoptimalisatie is de afgelopen maanden voor veel van onze klanten een nog hogere prioriteit geworden. Sommigen vinden hun producten in een veel grotere vraag; meer hebben het tegenovergestelde probleem. In beide gevallen dwingen gebeurtenissen zoals de Covid19-pandemie een heronderzoek van de standaard bedrijfsomstandigheden, zoals de keuze van bestelpunten en bestelhoeveelheden.

Zelfs in rustigere tijden kunnen parameters voor voorraadbeheer, zoals Mins en Maxes, verre van hun beste waarden worden ingesteld. We kunnen vragen: "Waarom is het bestelpunt voor SKU_1234 ingesteld op 20 eenheden en het bestelaantal op 35?" Die keuzes waren waarschijnlijk het verstarde resultaat van jaren van geaccumuleerde gissingen. Een beetje onderzoek kan uitwijzen dat de keuzes van 20 en 35 niet langer goed zijn afgestemd op het huidige vraagniveau, de volatiliteit van de vraag, de doorlooptijd van de leverancier en de artikelkosten.

Het knagende gevoel van "We zouden al deze keuzes moeten heroverwegen" wordt vaak gevolgd door "Oh nee, we moeten dit uitzoeken voor alle 10.000 items in voorraad?" De redder is hier geavanceerde software die het proces kunnen opschalen en het niet alleen wenselijk maar ook haalbaar maken. De software maakt gebruik van geavanceerde algoritmen om veranderingen in inventarisparameters, zoals bestelpunten, te vertalen in belangrijke prestatie-indicatoren zoals serviceniveaus en bedrijfskosten (gedefinieerd als de som van voorraadkosten, bestelkosten en tekortkosten).

Deze blog beschrijft hoe je de voordelen van voorraadoptimalisatie door 4 benaderingen te schetsen met verschillende mate van automatisering.

Vier benaderingen voor voorraadoptimalisatie

 

Hunt-and Peck

De eerste manier is item-specifieke "jagen en pikken" optimalisatie. Dat wil zeggen, u isoleert één voorraaditem per keer en doet 'wat als'-gissingen over hoe u dat item moet beheren. U kunt software bijvoorbeeld vragen om te evalueren wat er gebeurt als u het bestelpunt voor SKU123 wijzigt van 20 in 21 terwijl u de bestelhoeveelheid vast laat op 35. Vervolgens kunt u proberen 20 met rust te laten en 35 te verlagen naar 34. Uren later, omdat uw intuïties zijn goed, je hebt misschien een beter paar keuzes gemaakt, maar je weet niet of er een nog betere combinatie is die je niet hebt geprobeerd, en je moet misschien doorgaan naar de volgende SKU en de volgende en de volgende... Je hebt iets meer geautomatiseerd en uitgebreider nodig.

Er zijn drie manieren om de klus productiever te klaren. De eerste twee combineren je intuïtie met de efficiëntie van het behandelen van groepen gerelateerde items. De derde is een volledig automatische zoekopdracht.

Gedreven optimalisatie op serviceniveau

  1. Identificeer items waarvan u wilt dat ze allemaal hetzelfde serviceniveau hebben. U beheert bijvoorbeeld honderden 'C'-items en vraagt u zich af of hun doel voor het serviceniveau 70% moet zijn, of hoger of lager.
  2. Voer een potentieel doel voor het serviceniveau in en laat de software de gevolgen voorspellen in termen van investeringen in voorraaddollars en bedrijfskosten.
  3. Als het u niet bevalt wat u ziet, probeer dan een ander serviceniveaudoel totdat u zich op uw gemak voelt. Hier doet de software voorspellingen op groepsniveau van de gevolgen van je keuzes, maar je bent je keuzes nog aan het verkennen.

Optimalisatie door herverdeling vanuit een benchmark

  1. Identificeer items die op de een of andere manier met elkaar verband houden, zoals 'alle reserveonderdelen voor onderstellen van lightrailvoertuigen'.
  2. Gebruik de software om het huidige spectrum van serviceniveaus en kosten voor de groep items te beoordelen. Gewoonlijk zult u ontdekken dat sommige artikelen schromelijk overbevoorraad zijn (zoals aangegeven door onredelijk hoge serviceniveaus) en andere schromelijk onderbevoorraad (serviceniveaus beschamend laag).
  3. Gebruik de software om de wijzigingen te berekenen die nodig zijn om de hoogste serviceniveaus te verlagen en de laagste te verhogen. Door deze aanpassing worden vaak twee doelen tegelijk bereikt: verhoging van het gemiddelde serviceniveau en tegelijkertijd verlaging van de gemiddelde bedrijfskosten.

Volledig geautomatiseerde, artikelspecifieke optimalisatie

  1. Identificeer items die allemaal een serviceniveau boven een bepaald minimum vereisen. Misschien wilt u bijvoorbeeld dat al uw "A" -items minimaal een 95%-serviceniveau hebben.
  2. Gebruik de software om voor elk artikel de keuze van inventarisparameters te identificeren die de kosten voor het behalen of overschrijden van het serviceniveauminimum minimaliseren. De software zoekt op efficiënte wijze in de "ontwerpruimte" gedefinieerd door paren inventarisparameters (bijv. Min en Max) naar ontwerpen (bijv. Min=10, Max=23) die voldoen aan de serviceniveaubeperking. Daarvan zal het ontwerp met de laagste kosten worden geïdentificeerd.

Deze aanpak gaat het verst om de last van de planner naar het programma te verschuiven. Velen zouden er baat bij hebben om dit de standaardmanier te maken waarop ze enorme aantallen inventarisitems beheren. Voor sommige items kan het handig zijn om wat meer tijd in te steken om ervoor te zorgen dat er ook rekening wordt gehouden met aanvullende overwegingen. Een beperkte capaciteit op een inkoopafdeling kan bijvoorbeeld de oplossing van het ideaal dwingen door een afname van de frequentie van bestellingen te eisen, ondanks de prijs die wordt betaald aan hogere totale bedrijfskosten.

Vooruit gaan

Het optimaliseren van inventarisparameters is nog nooit zo belangrijk geweest, maar het leek altijd een onmogelijke droom: het was te veel werk en er waren geen goede modellen om parameterkeuzes te relateren aan belangrijke prestatie-indicatoren zoals serviceniveau en bedrijfskosten. Moderne software voor supply chain-analyse heeft het spel veranderd. Nu is de vraag niet "Waarom zouden we dat doen?" maar “Waarom doen we dat niet?” Met software kun je 'Dit is wat we willen' koppelen aan 'Maak het zo'.

 

 

 

 

Volume- en kleurvakken in een magazijn

 

Laat een reactie achter
gerelateerde berichten
Hebben uw statistische prognoses last van het wiggle-effect?

Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

Hoe om te gaan met statistische prognoses van nul

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

recente berichten

  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
  • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]

      Voorraadoptimalisatie heeft de afgelopen maanden voor veel van onze klanten een nog hogere prioriteit gekregen. Sommigen merken dat er veel meer vraag naar hun producten is. Cloud computing-bedrijven met unieke server- en hardwareonderdelen, e-commerce, online retailers, leveranciers van thuis- en kantoorbenodigdheden, meubilair op locatie, energiebedrijven, intensief onderhoud van bedrijfsmiddelen of opslag voor watervoorzieningsbedrijven hebben hun activiteit tijdens de pandemie opgevoerd. Garages die auto-onderdelen en vrachtwagenonderdelen verkopen, farmaceutische producten, producenten van gezondheidszorg of medische benodigdheden en leveranciers van veiligheidsproducten hebben te maken met een toenemende vraag. Bezorgservicebedrijven, schoonmaakdiensten, slijterijen en magazijnen voor conserven of potten, woonwinkels, tuinleveranciers, tuinonderhoudsbedrijven, hardware-, keuken- en bakbenodigdhedenwinkels, leveranciers van woonmeubelen met een grote vraag worden geconfronteerd met voorraadtekorten, lange doorlooptijden, voorraad tekortkosten, hogere bedrijfskosten en bestelkosten.