De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Veel van onze klanten die tijdens de pandemie de vraag zagen opdrogen, zien nu de vraag terugkeren. Sommigen zien een aanzienlijke stijging van de vraag. Andere klanten in kritieke sectoren zoals kunststoffen, biotechnologie, halfgeleiders en elektronica zagen de vraag al in april stijgen. Lees verder voor suggesties over hoe u met deze situaties om kunt gaan.

Een stijgende vraag veroorzaakt meestal twee problemen: onvermogen om bestellingen uit te voeren en onvermogen om aanvulling te krijgen vanwege overbelasting van leveranciers. Deze situatie vereist veranderingen in de manier waarop u uw geavanceerde planningssoftware gebruikt. Hier zijn drie tips om u te helpen het hoofd te bieden.

 

Tip #1: Beperk uw temporele focus

 

In normale tijden (weet je nog?), impliceerden meer gegevens betere resultaten. Tegenwoordig vergiftigen oude gegevens uw berekeningen, omdat ze voorwaarden vertegenwoordigen die niet meer van toepassing zijn. Voorspellingen en andere berekeningen dient u te baseren op gegevens uit de huidige situatie. Waar gegevens uit het verleden moeten worden afgesneden, kan duidelijk zijn uit een grafiek van de gegevens, of u kunt besluiten een "redelijke" afkapdatum vast te stellen op basis van een consensus van collega's. Smart Software heeft machine learning-algoritmen ontwikkeld die automatisch identificeren hoeveel historische data optimaal aan het voorspellingsmodel moet worden ingevoerd. Let op deze verbeteringen aan de software die binnenkort wordt uitgerold. Voer in de tussentijd nauwkeurigheidstests uit met behulp van uitgestelde werkelijke waarden met verschillende historische startdatums. Smart's prognose versus werkelijke functie ondersteunt dit automatisch.

Smart Demand Planner-prognoses vs. actueel rapport

 

Tip #2: Verhoog je planningstempo

 

Wanneer de activiteiten stabiel zijn, kunt u uw voorraadbeleid instellen en erop vertrouwen dat dit voor een lange tijd geschikt is. In turbulente tijden is het belangrijk om de frequentie van uw planningscycli te verhogen om te voorkomen dat oude beleidsinstellingen te ver wegdrijven van de optimale situatie.  Frequentere herijking van uw voorraadbeleid en prognoses betekent dat u sneller trends opmerkt die uw concurrentie zullen verrassen en u altijd een stap voor blijven. Met software die in staat is om automatisch optimale waarden te selecteren, kan al dat werk in één keer door de software worden gedaan. U moet die wijzigingen bekijken en mogelijk aanpassen, maar het is logisch om de software het grootste deel van het werk te laten doen.

 

Tip #3: Doe meer wat-als-planning

 

In turbulente tijden verwacht je misschien nog meer turbulentie in de toekomst. Door uw software te gebruiken voor wat-als-planning kunt u zich voorbereiden op veranderingen die mogelijk komen. Stel dat u contact heeft gehad met een belangrijke leverancier die erop wijst dat ze mogelijk de prijzen verhogen of hun leveringsschema's moeten verschuiven. Door de software verschillende inputs te geven, kunt u noodplannen maken. Als de prijzen stijgen, kunt u zien hoe reageren door het wijzigen van bestelhoeveelheden van invloed zou zijn op uw voorraadkosten en voorraadinvesteringen. Als de doorlooptijden oplopen, kunt u zien wat de impact zou zijn op de artikelbeschikbaarheid. Deze voorkennis helpt u erachter te komen wat uw tegenbewegingen zouden zijn voordat de crisis toeslaat.

Als er ooit een tijd is geweest dat we op de automatische piloot konden cruisen, dan is het wel in de achteruitkijkspiegel. Uw organisatie, die een explosieve groei doormaakt, heeft veel uitdagingen. Oude antwoorden zijn achterhaald; nieuwe antwoorden moeten ergens vandaan komen, snel. Geavanceerde software die gebruikmaakt van probabilistische voorspelling kan helpen, samen met veranderingen in planningsprocessen.

 

Laat een reactie achter

gerelateerde berichten

Hebben uw statistische prognoses last van het wiggle-effect?

Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

Hoe om te gaan met statistische prognoses van nul

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

recente berichten

  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]
  • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]