De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Door de voorraadniveaus te optimaliseren met behulp van de beste voorspellingen van de toekomstige vraag, kunnen enorme kostenbesparende efficiënties worden bereikt. Bekendheid met de basisprincipes van prognoses is een belangrijk onderdeel van effectief zijn met de softwaretools die zijn ontworpen om deze efficiëntie te benutten. Deze beknopte introductie (de eerste in een korte reeks blogposts) biedt de drukbezette professional een inleiding in de basisideeën die u nodig heeft bij het maken van prognoses. Hoe evalueert u uw prognose-inspanningen en hoe betrouwbaar zijn de resultaten?

Een goede voorspelling is 'onbevooroordeeld'. Het legt de voorspelbare structuur correct vast in de vraaggeschiedenis, waaronder: trend (een regelmatige toename of afname van de vraag); seizoensgebondenheid (cyclische variatie); speciale evenementen (bijv. verkoopacties) die van invloed kunnen zijn op de vraag of een kannibaliserend effect kunnen hebben op andere artikelen; en andere, macro-economische gebeurtenissen.

Met "onbevooroordeeld" bedoelen we dat de geschatte voorspelling niet te hoog of te laag is; het is even waarschijnlijk dat de werkelijke vraag boven of onder de voorspelde vraag ligt. Beschouw de voorspelling als uw beste schatting van wat er in de toekomst zou kunnen gebeuren. Als die voorspelling "onbevooroordeeld" is, zal het algemene beeld laten zien dat metingen van de werkelijke toekomstige vraag de prognoses zullen "brullen" - in evenwicht verdeeld boven en onder voorspellingen door de gelijke kansen.

Je kunt dit zien alsof je een artillerieofficier bent en het jouw taak is om met je kanon een doelwit te vernietigen. Je richt je kanon ("de voorspelling") en schiet dan en ziet hoe de granaten vallen. Als je het kanon correct hebt gericht (een "onbevooroordeelde" voorspelling produceert), zullen die granaten het doelwit "steunen"; sommige granaten vallen vooraan en sommige granaten vallen achterop, maar sommige granaten raken het doelwit. De vallende granaten kunnen worden gezien als de "daadwerkelijke vraag" die in de toekomst zal ontstaan. Als je goed hebt voorspeld (je kanon goed hebt gericht), dan zullen die actuals de prognoses ondersteunen en zowel boven als onder de prognose vallen.

Als je eenmaal een “onbevooroordeelde” voorspelling hebt verkregen (met andere woorden, je hebt je kanon correct gericht), is de vraag: hoe nauwkeurig was je voorspelling? Als we het voorbeeld van de artillerie gebruiken, hoe groot is het bereik rond het doelwit waarin uw granaten vallen? U wilt een zo klein mogelijk bereik hebben. Een goede voorspelling is er een met de minimaal mogelijke "spreiding" rond het doel.

Echter, alleen omdat de werkelijke waarden sterk rond de voorspelling vallen, wil nog niet zeggen dat u een slechte voorspelling hebt. Het kan alleen maar aangeven dat u een zeer "volatiele" vraaggeschiedenis heeft. Nogmaals, als je het artillerievoorbeeld gebruikt, als je begint te schieten in een orkaan, zou je moeten verwachten dat de granaten met een grote fout rond het doelwit vallen.

Uw doel is om een zo nauwkeurig mogelijke voorspelling te verkrijgen met de gegevens waarover u beschikt. Als die gegevens erg vluchtig zijn (je fotografeert in een orkaan), dan zou je een grote fout moeten verwachten. Als uw gegevens stabiel zijn, kunt u een kleine fout verwachten en zullen uw werkelijke waarden dicht bij de voorspelling liggen: u fotografeert op een heldere dag!

Om zowel het nut van uw prognoses als de mate van voorzichtigheid bij het toepassen ervan te begrijpen, moet u kunnen beoordelen en meten hoe goed uw prognose presteert. Hoe goed schat het in wat er werkelijk gebeurt? SmartForecasts doet dit automatisch door zijn "glijdende simulatie" door de geschiedenis te laten lopen. Het simuleert "voorspellingen" die zich in het verleden hadden kunnen voordoen. Een ouder deel van de geschiedenis, zonder de meest recente cijfers, wordt geïsoleerd en gebruikt om prognoses op te bouwen. Omdat deze prognoses vervolgens 'voorspellen' wat er in het meer recente verleden zou kunnen gebeuren - een periode waarvoor u al werkelijke vraaggegevens hebt - kunnen de prognoses worden vergeleken met de echte recente geschiedenis.

Op deze manier kan SmartForecasts empirisch de werkelijke voorspellingsfout berekenen - en die fouten zijn nodig om de veiligheidsvoorraad correct in te schatten. Veiligheidsvoorraad is de hoeveelheid extra voorraad die u nodig heeft om rekening te houden met de verwachte fout in uw prognoses. In een volgend essay, zal ik bespreken hoe we onze geschatte prognosefout gebruiken (via de glijdende simulatie van SmartForecasts) om veiligheidsvoorraden correct in te schatten.

Nelson Hartunian, PhD, was medeoprichter van Smart Software, was voorheen President en houdt er momenteel toezicht op als voorzitter van de raad van bestuur. Hij heeft op verschillende momenten leiding gegeven aan softwareontwikkeling, verkoop en klantenservice.

Laat een reactie achter

gerelateerde berichten

Mastering Automatic Forecasting for Time Series Data

Beheersing van automatische prognoses voor tijdreeksgegevens

In deze blog onderzoeken we de automatische prognose voor vraagprojecties in tijdreeksen. Er zijn meerdere methoden om de toekomstige vraag naar een artikel te voorspellen, en dit wordt complex als het om duizenden artikelen gaat, die elk een andere voorspellingstechniek vereisen vanwege hun unieke vraagpatronen.

Forecast-Based Inventory Management for Better Planning

Op prognoses gebaseerd voorraadbeheer voor een betere planning

Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]