Beheer van de inventaris van gepromote artikelen

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

In een vorige postbesprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

Als u de termen herziet, bedenk dan dat "serviceniveau" de waarschijnlijkheid is van het niet bevoorraden terwijl u wacht op een aanvullingsorder, terwijl "vulpercentage" het percentage van de vraag is waaraan onmiddellijk uit voorraad wordt voldaan. In mijn vorige bericht, "The Scourge of Skewness", heb ik erop gewezen dat een bepaald type vraagverdeling, met een "long right tail", zal leiden tot opvullingspercentages die veel lager kunnen zijn dan de serviceniveaus. Ik heb er ook op gewezen dat soms de enige manier om het opvullingspercentage te verbeteren, is om het beoogde serviceniveau te verhogen tot een ongewoon hoog niveau, wat duur kan zijn.

In dit bericht zal ik kijken naar het oplossen van het probleem in één speciaal geval: scheefheid als gevolg van effectieve verkooppromoties vermengd met "intermitterende vraag". Intermitterende vraag heeft een groot deel van nulwaarden, met willekeurige waarden die niet gelijk zijn aan nul. Succesvolle verkooppromoties, uiteraard positief, hebben een keerzijde: ze kunnen het "vraagsignaal" verwarren met pieken in uw vraaggeschiedenis, en kunnen prognoses en vertekening van veiligheidsvoorraadberekeningen ondermijnen. Wanneer een intermitterende vraag en effectieve verkoopacties de oorzaak zijn van de scheefheid van uw gegevens, bestaan er methoden om het probleem te omzeilen om zowel hogere opvullingspercentages als nauwkeurigere vraagprognoses te bereiken.

Hoe promoties scheefheid vergroten

Succesvolle promoties doen de vraag naar artikelen abrupt stijgen. Dit creëert anomalieën, of "uitschieters", die bijdragen aan het vormen van een scheve verdeling. Als we weten wanneer er in het verleden promoties hebben plaatsgevonden, kunnen we het record van de eerdere vraag van een item aanpassen. We produceren een alternatieve vraaggeschiedenis alsof er geen promoties zijn geweest, door de uitschieters te vervangen door waarden die meer representatief zijn voor het "natuurlijke" vraagniveau. Deze aanpassingen verminderen de scheefheid van de vraag. Verminderde scheefheid kan leiden tot aanzienlijke verlagingen van zowel verwachte prognoses als veiligheidsvoorraden, die bij elkaar optellen om bestelpunten te vormen.

Succesvolle promoties zullen waarschijnlijk worden herhaald. Wanneer dat gebeurt, kunnen de promotie-effecten worden toegevoegd aan vraagprognoses om hun nauwkeurigheid te vergroten. Het effect van toekomstige promoties op voorraadbeheer zal zijn dat het risico van stockouts toeneemt, dus een verstandige reactie is om op operationeel niveau te werken aan het opbouwen van tijdelijke voorraad, in een hoeveelheid die is afgestemd op de geschatte impact van eerdere promoties op de betrokken artikelen.

 

Gebeurtenismodellering gebruiken om vraagprognoses te verbeteren

Het is mogelijk om de impact van soortgelijke evenementen te modelleren en dit toe te passen op geplande evenementen in de toekomst. Als u dit doet, kunt u uw prognose op twee manieren verbeteren: door de vraagschok te projecteren die u verwacht van een gepland evenement; en het rationaliseren van de pieken in het verleden die werden veroorzaakt door gebeurtenissen, waardoor uw basisactiviteit zichtbaarder en nauwkeuriger voorspelbaar wordt. We doen dit veel in SmartForecasts, dus sta me toe onze ervaring daar te gebruiken om u te laten zien wat ik bedoel.

Event Modeling omvat de volgende stappen:
• Automatische inschatting van de impact van eerdere promoties (wat op zich al een nuttig resultaat is).
• Historische vraag aanpassen om het effect van promoties statistisch te verwijderen.
• Promotie-vrije prognoses maken.
• Het herzien van de prognoses voor eventuele toekomstige perioden waarin promoties zijn gepland.

We noemen dit type analyse “Promo forecasting”. We gebruiken het woord "promoties" om te beschrijven wat u zelf doet om uw resultaten te verbeteren. We gebruiken 'gebeurtenissen' om te beschrijven wat de wereld met u doet, meestal in uw nadeel; voorbeelden zijn stakingen, stroomuitval, magazijnbranden en andere ongelukkige gebeurtenissen.

Om te begrijpen hoe Event Modeling u kan helpen om te gaan met scheefheid bij het doen van vraagprognoses voor artikelen met een hoog volume, bekijkt u figuren 1-3.

Figuur 1 laat zien dat het vraagpatroon van dit artikel duidelijk seizoensgebonden is en dat de voorspelling zowel seizoensgebonden als "strak" is, wat betekent dat het voorspelde onzekerheidsinterval ("foutmarge", weergegeven in cyaankleurige lijnen) erg smal is.

Afbeelding 2 toont een alternatieve geschiedenis waarin een promotie in juni 2014 het gebruikelijke seizoensdieptepunt van juni-verkopen omkeerde. Dit vraagpatroon werd voorspeld met behulp van het automatische voorspellingstoernooi in SmartForecasts, zoals in afbeelding 1. Deze keer vervormde de promotie het seizoenspatroon voldoende om een ongepaste niet-seizoensgebonden voorspelling te maken, en een die een veel grotere foutmarge heeft.

Ten slotte laat afbeelding 3 zien hoe Promo-prognoses omgaan met hetzelfde gepromote scenario, een seizoensprognose behouden en in de prognose een schatting inbouwen van het effect van een geplande herhalingspromotie in 2015.

Het geval van intermitterende vraag

In afbeelding 1 was het artikel een gereed product met een hoog volume en was de taak vraagprognose. Promomodellering is ook nuttig wanneer het gaat om het instellen van veiligheidsvoorraden en bestelpunten voor artikelen met intermitterende vraag, of het nu gaat om gereed product, componenten of reserveonderdelen. Intermitterende vraag heeft vaak een scheve verdeling die het moeilijk maakt om een hoge artikelbeschikbaarheid te bereiken met een kleine investering in voorraad.

Afbeelding 4 illustreert het probleem dat een succesvolle promotie per ongeluk kan veroorzaken voor voorraadbeheer. Als zo'n piek het gevolg is van de natuurlijke, niet-gestimuleerde vraag, dan is de enige manier om hoge opvullingspercentages te behouden, om veiligheidsvoorraden aan te leggen die groot genoeg zijn om deze willekeurige pieken op te vangen. In dit geval was de grote vraagpiek van 500 stuks in februari 2013 het resultaat van een eenmalige actie.

Rekening houden met promoties om voorraadbeheer te verbeteren

Als u de piek in het bovenstaande voorbeeld onbewust beschouwt als onderdeel van de natuurlijke variabiliteit in de vraag, resulteert dit in een slecht opvullingspercentage. Om een beoogd serviceniveau van bijvoorbeeld 95% met een doorlooptijd van één maand te bereiken, zou een bestelpunt van 38 eenheden nodig zijn, berekend als de som van een verwachte prognose over de aanvultijd van één maand van 21 eenheden aangevuld met een veiligheidsvoorraad van 17 eenheden. Deze investering zou resulteren in een teleurstellend opvullingspercentage van slechts 36%.

Erkennen dat de piek een eenmalige promotie is en de 500 eenheden vervangen door 0 zou natuurlijk een groot verschil maken. Het bestelpunt zou dalen van 38 eenheden naar 31 (de som van een verwachte vraag van 7 eenheden en een veiligheidsvoorraad van 24 eenheden) en het opvullingspercentage zou toenemen tot 94%.

Het is natuurlijk niet oké om vervelende pieken in de vraag gewoon weg te gooien wanneer ze het leven ongemakkelijk maken; er moet een valide 'business story' achter de aanpassing van de historische vraag zitten. Als de piek het gevolg is van een gegevensverwerkingsfout, repareer deze dan in ieder geval. Als de piek samenvalt met een promotie, zal het vervangen van de piek door bijvoorbeeld de mediane vraag (vaak nul, zoals in dit voorbeeld) resulteren in een veel duurzamere voorraadinvestering die nog steeds voldoet aan agressieve prestatiedoelstellingen. Toekomstige promoties van hetzelfde type op hetzelfde artikel zullen wat extra inspanning vergen om zich voor te bereiden op de tijdelijke stijging van de vraag, maar het aanbevolen bestelpunt zal op de lange termijn correct zijn.

Thomas Willemain, PhD, was medeoprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselear Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Correlatie versus oorzakelijk verband: is dit relevant voor uw baan?

Correlatie versus oorzakelijk verband: is dit relevant voor uw baan?

Buiten het werk heb je misschien de beroemde uitspraak 'Correlatie is geen oorzakelijk verband' gehoord. Het klinkt misschien als een stuk theoretische onzin die, hoewel betrokken bij een recente Nobelprijs voor economie, niet relevant is voor uw werk als vraagplanner. Is dat zo, dan heb je misschien maar gedeeltelijk gelijk.

Soorten prognoseproblemen die we helpen oplossen

Soorten prognoseproblemen die we helpen oplossen

Het genereren van nauwkeurige statistische prognoses is geen gemakkelijke taak. Planners moeten historische gegevens continu up-to-date houden, een database met voorspellingsmodellen bouwen en beheren, weten welke voorspellingsmethoden ze moeten gebruiken, bijhouden of voorspellingsonderdrukkingen worden overschreven en rapporteren over de nauwkeurigheid van de voorspelling. Hier zijn voorbeelden van prognoseproblemen die SmartForecasts kan oplossen, samen met de soorten bedrijfsgegevens die representatief zijn voor elk.

Drie manieren om de nauwkeurigheid van prognoses te schatten

Drie manieren om de nauwkeurigheid van prognoses te schatten

Nauwkeurigheid van prognoses is een belangrijke maatstaf om de kwaliteit van uw vraagplanningsproces te beoordelen. Als u eenmaal prognoses heeft, zijn er verschillende manieren om hun nauwkeurigheid samen te vatten, meestal aangeduid met obscure drie- of vierletterige acroniemen zoals MAPE, RMSE en MAE.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      VOORSPELLEN GEDREVEN INVENTARISBEHEER

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

      In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over op prognoses gebaseerd voorraadbeheerbeleid, ook wel bekend als MRP-logica. Dit is de vierde in onze serie over belangrijke benaderingen voor voorraadbeheer. We beginnen met het bekijken van enkele zeer eenvoudige en vervolgens robuustere modellen van voorraaddynamiek die ons helpen bepalen hoeveel we moeten bestellen of produceren en wanneer. Vervolgens bekijken we hoe we de doorlooptijd kunnen berekenen en hoe we rekening kunnen houden met de doorlooptijdvariabiliteit. Tom besluit met een beschrijving van het belang van veiligheidsvoorraad, de rol ervan bij het goed bufferen tegen vraag- en aanbodonzekerheid, en hoe deze het beste kan worden berekend. 

       

      Laat een reactie achter

      RECENTE BERICHTEN

      Hebben uw statistische prognoses last van het wiggle-effect?

      Hebben uw statistische prognoses last van het wiggle-effect?

      Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

      Hoe om te gaan met statistische prognoses van nul

      Hoe om te gaan met statistische prognoses van nul

      Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

      recente berichten

      • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          Vraagvariabiliteit beheren

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Iedereen die het werk doet, weet dat het beheren van voorraden stressvol kan zijn. Veelvoorkomende stressfactoren zijn: Klanten met "speciale" verzoeken, IT-afdelingen met andere prioriteiten, wankele ERP-systemen die draaien op onnauwkeurige gegevens, grondstoftekorten, leveranciers met lange doorlooptijden in verre landen waar de productie vaak stopt om verschillende redenen en meer. Deze nota gaat in op één specifieke en altijd aanwezige bron van stress: variabiliteit in de vraag.

          Iedereen heeft een prognoseprobleem

           

          Stel dat u een grote vloot reserveonderdelen beheert. Dit kan chirurgische apparatuur zijn voor uw ziekenhuis, of reparatieonderdelen voor uw elektriciteitscentrale. Jouw missie is om de uptime te maximaliseren. Je vijand is downtime. Maar omdat storingen willekeurig toeslaan, ben je constant in de reactieve modus. U zou kunnen hopen op redding door prognosetechnologieën. Maar prognoses zijn onvermijdelijk tot op zekere hoogte onvolmaakt: het verrassingselement is altijd aanwezig. U kunt wachten tot Internet of Things (IOT)-technologie op uw apparatuur is geïmplementeerd om dreigende storingen te bewaken en te detecteren, zodat u reparaties ruim van tevoren kunt plannen. Maar u weet dat u de duizenden kleine dingen die kunnen mislukken en een groot ding onbruikbaar kan maken, niet kunt opmeten.

          U besluit dus prognoses te combineren met voorraadbeheer en buffers of veiligheidsvoorraden aan te leggen om u te beschermen tegen onverwachte pieken in de vraag. Nu moet je uitrekenen hoeveel Safety stock onderhouden, wetende dat te weinig kwetsbaarheid betekent en te veel een opgeblazen gevoel.

          Stel dat u voorraden gereed product beheert voor een make-to-stock-bedrijf. Uw probleem is in wezen hetzelfde als bij het beheren van serviceonderdelen: u hebt externe klanten en een onzekere vraag. Maar misschien heb je ook nog andere problemen als het gaat om het synchroniseren van meerdere leveranciers van componenten die je assembleert tot eindproducten. De leveranciers willen dat je hen vertelt hoeveel van hun spullen ze moeten maken, zodat jij jouw spullen kunt maken, maar je weet niet hoeveel van je eigen spullen je moet maken.

          Stel ten slotte dat u afgewerkte goederen behandelt in een bouwbedrijf op bestelling. U zou kunnen denken dat u geen prognoseprobleem meer heeft, aangezien u pas bouwt als u wordt betaald om te bouwen. Maar je hebt wel een prognoseprobleem. Aangezien uw eindproducten kunnen worden samengesteld uit een combinatie van componenten en subassemblages, moet u een prognose van de vraag naar gereed product vertalen om een prognose van die componenten uit te werken. Anders ga je je afgewerkte product maken en ontdek je dat je een vereist onderdeel niet hebt en moet je wachten tot je alles wat je nodig hebt reactief kunt assembleren. En uw klanten zijn misschien niet bereid om te wachten.

          Dus iedereen heeft een prognoseprobleem.

          Wat maakt prognoses moeilijk

           

          Prognoses kunnen snel, eenvoudig en uiterst nauwkeurig zijn - zolang de wereld maar eenvoudig is. Als de vraag naar uw product elke week 10 stuks is, maand na maand, kunt u zeer nauwkeurige prognoses maken. Maar het leven is niet helemaal zo. Als je geluk hebt en het leven is bijna zo - misschien is de wekelijkse vraag meer als {10, 9, 10, 8, 12, 10, 10 ...} - kun je nog steeds een zeer nauwkeurige prognose maken en slechts kleine aanpassingen maken aan de randen . Maar als het leven is zoals het vaker is – misschien ziet de wekelijkse vraag eruit als {0, 0, 7, 0, 0, 0, 23, 0 …} – is vraagvoorspelling inderdaad moeilijk. Het belangrijkste onderscheid is de variabiliteit van de vraag: het is het zigzaggen en zigzaggen dat de pijn veroorzaakt.

          Veiligheidsvoorraad neemt het over waar prognoses ophouden

           

          Statistische prognosemethoden vormen een belangrijk onderdeel van de oplossing. Ze laten u zoveel mogelijk voordeel halen uit de historische vraagpatronen die uw bedrijf voor elk artikel heeft geregistreerd. De taak van prognoses is om te beschrijven wat typisch is, wat de basis vormt voor het omgaan met willekeur in de vraag. Statistische voorspellingstechnieken werken door het vinden van 'grote plaatje'-kenmerken in vraagrecords, zoals trend en seizoensinvloeden, en deze vervolgens in de toekomst te projecteren. Ze gaan er allemaal impliciet van uit dat welke patronen er nu ook zijn, ze zullen blijven bestaan, dus de groei van 5% zal doorgaan en de vraag in juli zal altijd 20% hoger zijn dan de vraag in februari. Om dat punt te bereiken, gebruiken statistische prognosemethoden een vorm van middeling om de "ruis" in de vraaggeschiedenis te onderdrukken.

          Maar dan valt de rest van het werk op voorraadbeheer, omdat de atypische, willekeurige component van de toekomstige vraag in de toekomst nog steeds een gedoe zal zijn. Dit onvermijdelijke niveau van onzekerheid moet worden opgevangen door de "schokbreker" die veiligheidsvoorraad wordt genoemd.

          Dezelfde methoden die prognoses van trend en/of seizoensinvloeden produceren, kunnen worden gebruikt om de hoeveelheid voorspellingsfouten te schatten. Dit moet zorgvuldig worden gedaan met behulp van een methode die "holdout-analyse" wordt genoemd. Het werkt zo. Stel dat u 365 waarnemingen heeft van de dagelijkse vraag naar artikel X, met een doorlooptijd voor aanvulling van 10 dagen. U wilt weten hoeveel eenheden er over een toekomstige periode van 10 dagen zullen worden gevraagd. U kunt de eerste 305 dagen van de vraaggeschiedenis invoeren in de prognosetechniek en prognoses krijgen voor de volgende 10 dagen, dagen 306-315.

          Het antwoord geeft u een schatting van de totale vraag over 10 dagen. Belangrijk is dat het u ook een schatting geeft van de variabiliteit rond die voorspelling, dwz de voorspellingsfout, het verschil tussen wat er werkelijk gebeurde in dagen 306-315 en wat was voorspeld. Nu kunt u het proces herhalen, dit keer met de eerste 306 dagen om de volgende 10 te voorspellen, de eerste 307 dagen om de volgende 10 te voorspellen, enz. U krijgt uiteindelijk 52 eerlijke schattingen van de variabiliteit van de totale vraag over een periode van 10 dagen. doorlooptijd. Stel dat 95% van die schattingen minder dan 28 eenheden zijn. Dan zouden 28 eenheden een vrij veilige veiligheidsvoorraad zijn om aan de prognose toe te voegen, aangezien u slechts 5% van de tijd tekorten zult tegenkomen.

          Moderne statistische software doet deze berekeningen automatisch. Het kan ten minste één van de chronische hoofdpijn van voorraadbeheer verlichten door u te helpen omgaan met de variabiliteit in de vraag.

          Laat een reactie achter

          gerelateerde berichten

          Geen Resultaten Gevonden

          De pagina die u zocht kon niet gevonden worden. Probeer uw zoekopdracht te verfijnen of gebruik de bovenstaande navigatie om deze post te vinden.

          recente berichten

          • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

              Onnauwkeurige gegevens, tekorten aan grondstoffen, leveranciers met lange doorlooptijden in verre landen kunnen de vraag beïnvloeden. Cloud computing-bedrijven met unieke server- en hardwareonderdelen, e-commerce, online retailers, leveranciers van thuis- en kantoorbenodigdheden, meubilair op locatie, energiebedrijven, intensief onderhoud van bedrijfsmiddelen of opslag voor watervoorzieningsbedrijven hebben hun activiteit tijdens de pandemie opgevoerd. Garages die auto-onderdelen en vrachtwagenonderdelen verkopen, farmaceutische producten, producenten van gezondheidszorg of medische benodigdheden en leveranciers van veiligheidsproducten hebben te maken met een toenemende vraag. Bezorgservicebedrijven, schoonmaakdiensten, slijterijen en magazijnen voor conserven of potten, woonwinkels, tuinleveranciers, tuinonderhoudsbedrijven, hardware-, keuken- en bakbenodigdhedenwinkels, leveranciers van woonmeubelen met een grote vraag worden geconfronteerd met voorraadtekorten, lange doorlooptijden, voorraad tekortkosten, hogere bedrijfskosten en bestelkosten.

              Top 3 meest voorkomende voorraadbeheerbeleid

              De slimme voorspeller

               Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Deze blog definieert en vergelijkt de drie meest gebruikte beleidsregels voor voorraadbeheer. Het zou nuttig moeten zijn voor zowel nieuwkomers als ervaren mensen die een mogelijke verandering in het beleid van hun bedrijf overwegen. De blog gaat ook in op hoe vraagprognoses voorraadbeheer ondersteunen, de keuze van het te gebruiken beleid en de berekening van de inputs die dit beleid sturen. Zie het als een verkort stuk van inventaris 101.

              Scenario

              U beheert een bepaald item. Het artikel is belangrijk genoeg voor uw klanten dat u voldoende voorraad wilt hebben om voorraadtekorten te voorkomen. Het artikel is echter ook zo duur dat u ook de hoeveelheid contant geld die vastzit in de voorraad wilt minimaliseren. Het proces van het bestellen van aanvullingsvoorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren. De vraag naar het artikel is onvoorspelbaar. Dat geldt ook voor de doorlooptijd voor aanvulling tussen het moment waarop u merkt dat er meer nodig is en het moment waarop het in het schap aankomt, klaar voor gebruik of verzending. 

              Uw vraag is “Hoe beheer ik dit item? Hoe beslis ik wanneer ik meer moet bestellen en hoeveel ik moet bestellen?” Bij het nemen van deze beslissing zijn er verschillende benaderingen die u kunt gebruiken. Deze blog schetst het meest gebruikte voorraadplanningsbeleid: periodieke bestelling tot (T, S), bestelpunt/bestelhoeveelheid (R, Q) en min/max (s, S). Deze benaderingen zijn vaak ingebed in ERP-systemen en stellen bedrijven in staat om automatische suggesties te genereren over wat en wanneer ze moeten bestellen. Om de juiste beslissing te nemen, moet u weten hoe elk van deze benaderingen werkt en wat de voordelen en beperkingen van elke benadering zijn.    

              Periodieke beoordeling, order-up-to-beleid

              De verkorte notatie voor dit beleid is (T, S), waarbij T de vaste tijd tussen orders is en S de order-up-to-level is.

              Wanneer bestellen: Bestellingen worden elke T dagen als een uurwerk geplaatst. Het gebruik van een vast bestelinterval is handig voor bedrijven die hun voorraadniveau niet in realtime kunnen volgen of die er de voorkeur aan geven om op geplande tijdstippen bestellingen aan leveranciers te geven.

              Hoeveel te bestellen: Het voorraadniveau wordt gemeten en het verschil tussen dat niveau en het bestellingsniveau S wordt berekend. Als het voorraadniveau 7 eenheden is en S = 10, worden er 3 eenheden besteld.

              Opmerking: Dit is het eenvoudigste beleid om te implementeren, maar ook het minst flexibel om te reageren op fluctuaties in vraag en/of doorlooptijd. Houd er ook rekening mee dat, hoewel de ordergrootte voldoende zou zijn om het voorraadniveau terug te brengen naar S als de aanvulling onmiddellijk zou zijn, er in de praktijk enige vertraging van de aanvulling zal zijn gedurende welke tijd de voorraad blijft dalen, dus het voorraadniveau zal zelden alle niveaus bereiken. weg omhoog S.

              Doorlopende beoordeling, beleid voor vaste bestelhoeveelheid (bestelpunt, bestelhoeveelheid)

              De verkorte notatie voor dit beleid is (R, Q), waarbij R het bestelpunt is en Q de vaste bestelhoeveelheid.

              Wanneer bestellen: Bestellingen worden geplaatst zodra de voorraad daalt tot of onder het bestelpunt, R. In theorie wordt het voorraadniveau constant gecontroleerd, maar in de praktijk wordt dit meestal periodiek gecontroleerd aan het begin of einde van elke werkdag. 

              Hoeveel te bestellen: De ordergrootte is altijd vast op Q-eenheden.

              Opmerking: (R, Q) reageert sneller dan (S, T) omdat het sneller reageert op tekenen van dreigende stockout. De waarde van de vaste bestelhoeveelheid Q kan niet helemaal aan u liggen. Leveranciers kunnen vaak voorwaarden dicteren die uw keuze voor Q beperken tot waarden die compatibel zijn met minima en veelvouden. Een leverancier kan bijvoorbeeld aandringen op een bestelling van minimaal 20 eenheden en altijd een veelvoud van 5 zijn. Ordergroottes moeten dus 20, 25, 30, 35, enz. zijn. (Deze opmerking was ook van toepassing op de twee andere voorraadbeleidsregels. )

              Manager In Pakhuis Met Klembord

              Continue beoordeling, order-up-to-beleid (Min/Max)

              De verkorte notatie voor dit beleid is (s, S), ook wel "kleine s, grote S" genoemd, waarbij s het bestelpunt is en S het order-up-to-niveau is. Dit beleid wordt vaker (Min, Max) genoemd.

              Wanneer bestellen: Bestellingen worden geplaatst zodra de voorraad daalt tot of onder de Min. Net als bij (R, Q) wordt het voorraadniveau zogenaamd constant gecontroleerd, maar in de praktijk wordt dit meestal aan het einde van elke werkdag gecontroleerd. 

              Hoeveel te bestellen: De ordergrootte varieert. Het is gelijk aan het verschil tussen de Max en de huidige inventaris op het moment dat de Min wordt bereikt of overschreden.

              Opmerking: (Min, Max) reageert zelfs nog sneller dan (R, Q) omdat het de ordergrootte aanpast om rekening te houden met hoeveel de voorraad onder de Min is gedaald. Wanneer de vraag nul of één eenheden is, stelt een gemeenschappelijke variatie Min = Max -1 in; dit wordt het "basisvoorraadbeleid" genoemd.

              Een andere beleidskeuze: wat gebeurt er als ik geen voorraad meer heb?

              Zoals u zich kunt voorstellen, leidt elk beleid waarschijnlijk tot een andere temporele volgorde van voorraadniveaus (zie figuur 1 hieronder). Er is nog een andere factor die van invloed is op het verloop van gebeurtenissen in de loop van de tijd: het beleid dat u kiest voor het omgaan met stockouts. Grofweg zijn er twee hoofdbenaderingen.

              Nabestellingsbeleid: Als je voorraad op is, houd je de bestelling bij en vul je deze later in. Onder dit beleid is het verstandig om te spreken van negatieve voorraad. De negatieve voorraad vertegenwoordigt het aantal backorders dat moet worden gevuld. Vermoedelijk krijgt elke klant die gedwongen wordt te wachten de eerste bonnen wanneer de aanvulling arriveert. U heeft waarschijnlijk een backorderbeleid voor artikelen die uniek zijn voor uw bedrijf en die uw klant nergens anders kan kopen.

              Verliesbeleid: Als je voorraad op is, wendt de klant zich tot een andere bron om zijn bestelling uit te voeren. Wanneer de aanvulling arriveert, krijgt een nieuwe klant die nieuwe eenheden. Voorraad kan nooit onder nul komen. Kies dit beleid voor basisproducten die gemakkelijk bij een concurrent kunnen worden gekocht. Als u het niet op voorraad heeft, gaat uw klant hoogstwaarschijnlijk ergens anders heen. 

               

              De rol van vraagprognoses bij voorraadbeheer

              De keuze van besturingsparameters, zoals de waarden van Min en Max, vereist input van een soort vraagvoorspellingsproces.

              Traditioneel betekende dit het bepalen van de waarschijnlijkheidsverdeling van het aantal eenheden dat wordt gevraagd over een vast tijdsinterval, hetzij de doorlooptijd in (R, Q) en (Min, Max) systemen of T + doorlooptijd in (T, S) systemen. Er is aangenomen dat deze verdeling normaal is (de beroemde "klokvormige curve"). Traditionele methoden zijn uitgebreid waarbij niet wordt aangenomen dat de vraagverdeling normaal is, maar een andere verdeling (bijv. Poisson, negatief binomiaal, enz.) 

              Deze traditionele methoden hebben verschillende tekortkomingen.

               

               

              • Ten derde vereisen nauwkeurige schattingen van de bedrijfskosten van de voorraad een analyse van de gehele aanvullingscyclus (van de ene aanvulling tot de volgende), niet alleen het deel van de cyclus dat begint met de voorraad die het bestelpunt bereikt.

               

              • Ten slotte zijn de doorlooptijden voor aanvulling doorgaans onvoorspelbaar of willekeurig, niet vast. Veel modellen gaan uit van een vaste doorlooptijd op basis van een gemiddelde, door de leverancier opgegeven doorlooptijd of gemiddelde doorlooptijd + veiligheidstijd.

              Gelukkig bestaat er betere software voor voorraadplanning en voorraadoptimalisatie, gebaseerd op het genereren van een volledige reeks willekeurige vraagscenario's, samen met willekeurige doorlooptijden. Deze scenario's "stresstesten" elk voorgesteld paar parameters voor voorraadbeheer en beoordelen hun verwachte prestaties. Gebruikers kunnen niet alleen kiezen tussen beleidsregels (bijv. Min, Max vs. R, Q) maar ook bepalen welke variant van het voorgestelde beleid het beste is (bijv. Min, Max van 10,20 vs. 15, 25, enz.) Voorbeelden hiervan scenario's worden hieronder gegeven.

              Magazijnbeheerder met een smartphone.

              Het proces van het bestellen van aanvullingsvoorraad is zo duur en omslachtig dat u ook het aantal inkooporders dat u moet genereren wilt minimaliseren

              Kiezen tussen voorraadbeheerbeleid

              Welke polis past bij u? Er is een duidelijke pikorde in termen van artikelbeschikbaarheid, met (Min, Max) eerst, (R, Q) als tweede en (T, S) als laatste. Deze volgorde vloeit voort uit de mate waarin het beleid reageert op fluctuaties in de willekeur van vraag en aanvulling. De volgorde is omgekeerd als het gaat om het gemak van implementatie.

              Hoe "scoort" u de prestaties van een voorraadbeleid? Er zijn twee tegengestelde krachten die in evenwicht moeten zijn: kosten en service.

              Voorraadkosten kunnen worden uitgedrukt als voorraadinvestering of voorraadbedrijfskosten. De eerste is de dollarwaarde van de items die wachten om te worden gebruikt. Dit laatste is de som van drie componenten: bewaarkosten (de kosten van "verzorging en voeding van spullen op de plank"), bestelkosten (in feite de kosten van het snijden van een inkooporder en het ontvangen van die bestelling) en tekortkosten (de boete die u betaalt wanneer u een verkoop verliest of een klant dwingt te wachten op wat hij wil).

              Service wordt meestal gemeten door serviceniveau en opvullingspercentage. Serviceniveau is de kans dat een aangevraagd artikel direct uit voorraad wordt verzonden. Het opvullingspercentage is het aandeel van de gevraagde eenheden die onmiddellijk uit voorraad worden verzonden. Als voormalig professor beschouw ik het serviceniveau als een alles-of-niets-cijfer: als een klant 10 eenheden nodig heeft en u kunt er slechts 9 leveren, is dat een F. Opvullingspercentage is een gedeeltelijk kredietcijfer: 9 op 10 is 90% .

              Wanneer u beslist over de waarden van voorraadbeheerbeleid, vindt u een balans tussen kosten en service. U kunt perfecte service verlenen door een oneindige inventaris bij te houden. U kunt de kosten op nul houden door geen voorraad aan te houden. Je moet een verstandige plek vinden om te opereren tussen deze twee belachelijke uitersten. Het genereren en analyseren van vraagscenario's kan de gevolgen van uw keuzes kwantificeren.

              Een demonstratie van de verschillen tussen twee voorraadbeheerbeleidslijnen

              We laten nu zien hoe voorhanden voorraad verschillend evolueert onder twee beleidsregels. De twee beleidsregels zijn (R, Q) en (Min, Max) waarbij backorders zijn toegestaan. Om de vergelijking eerlijk te houden, stellen we Min = R en Max = R+Q in, gebruiken we een vaste doorlooptijd van vijf dagen en onderwerpen we beide polissen aan dezelfde volgorde van dagelijkse eisen gedurende 365 gesimuleerde werkdagen.

              Afbeelding 1 toont de dagelijkse voorhanden voorraad onder de twee polissen onderworpen aan hetzelfde patroon van dagelijkse vraag. In dit voorbeeld heeft het beleid (Min, Max) slechts twee periodes van negatieve voorraad gedurende het jaar, terwijl het beleid (R, Q) er drie heeft. Het beleid (Min, Max) werkt ook met een kleiner gemiddeld aantal beschikbare eenheden. Verschillende vraagreeksen zullen verschillende resultaten opleveren, maar over het algemeen presteert het (Min, Max) beleid beter.

              Houd er rekening mee dat de plots van voorhanden voorraad informatie bevatten die nodig is om zowel kosten- als beschikbaarheidsstatistieken te berekenen.

              Afbeeldingen die dagelijkse voorhanden voorraad vergelijken onder twee voorraadbeleidslijnen

              Afbeelding 1: vergelijking van dagelijkse voorhanden voorraad onder twee voorraadbeleidslijnen

              Rol van software voor voorraadplanning

              De best-of-breed systemen voor inventarisplanning, prognoses en optimalisatie kunnen u helpen bepalen welk type beleid (is het beter om Min/Max te gebruiken in plaats van R,Q) en welke invoersets optimaal zijn (dwz wat moet ik invoeren voor Min en Max ). De beste systemen voor voorraadplanning en vraagvoorspelling kunnen u helpen deze geoptimaliseerde invoer te ontwikkelen, zodat u uw ERP-systemen regelmatig kunt vullen en bijwerken met nauwkeurige aanvullingsdrivers.

              Overzicht

              We hebben de drie meest gebruikte beleidsregels voor voorraadbeheer gedefinieerd en beschreven: (T, S), (R, Q) en (Min, Max), samen met de twee meest voorkomende reacties op stockouts: nabestellingen of verloren bestellingen. We merkten op dat deze beleidsmaatregelen steeds meer inspanningen vergen om te implementeren, maar ook steeds betere gemiddelde prestaties leveren. We benadrukten de rol van vraagprognoses bij het beoordelen van voorraadbeheerbeleid. Ten slotte illustreerden we hoe de keuze van het beleid het dagelijkse voorraadniveau beïnvloedt.

              Laat een reactie achter

              gerelateerde berichten

              Hebben uw statistische prognoses last van het wiggle-effect?

              Hebben uw statistische prognoses last van het wiggle-effect?

              Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

              Hoe om te gaan met statistische prognoses van nul

              Hoe om te gaan met statistische prognoses van nul

              Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

              recente berichten

              • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
              • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
              • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
                Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
              • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
                Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
              • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
                Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                  In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                  De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                  Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                  In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

                  Een doelserviceniveau kiezen om de voorraad te optimaliseren

                  De slimme voorspeller

                   Het nastreven van best practices op het gebied van vraagplanning,

                  prognoses en voorraadoptimalisatie

                  Overzicht

                  Een doel stellen serviceniveau of opvullingspercentage is een strategische beslissing over voorraadrisicobeheer. Het kiezen van serviceniveaus kan moeilijk zijn. Relevante factoren zijn onder meer het huidige serviceniveau, doorlooptijden voor bevoorrading, kostenbeperkingen, de pijn die u en uw klanten door tekorten wordt toegebracht, en uw concurrentiepositie. Het stellen van doelen wordt vaak het best benaderd als een samenwerking tussen operations, sales en finance. Voorraadoptimalisatiesoftware is een essentieel hulpmiddel in het proces.

                  Keuzes op serviceniveau

                  Serviceniveau is de kans dat er geen tekorten ontstaan tussen het moment dat u meer voorraad bestelt en het moment dat deze in het schap ligt. Het redelijke bereik van serviceniveaus loopt van ongeveer 70% tot 99%. Niveaus onder 70% kunnen erop wijzen dat u niet om uw klanten geeft of ze niet aankan. Niveaus van 100% zijn bijna nooit geschikt en duiden meestal op een enorm opgeblazen inventaris.

                  Factoren die van invloed zijn op de keuze van het serviceniveau

                  Verschillende factoren zijn van invloed op de keuze van het serviceniveau voor een voorraadartikel. Hier zijn enkele van de belangrijkste.

                  Huidige serviceniveaus:
                  Een redelijke plaats om te beginnen is om erachter te komen wat uw huidige serviceniveaus zijn voor elk item en in het algemeen. Als je al in goede conditie bent, wordt het gemakkelijker om een reeds goede oplossing aan te passen. Als u er nu slecht aan toe bent, kan het moeilijker zijn om serviceniveaus in te stellen. Verrassend genoeg hebben maar weinig bedrijven gegevens over deze belangrijke maatstaf voor hun hele voorraaditems. Wat vaak gebeurt, is dat herordeningspunten willens en wetens groeien uit keuzes die in de prehistorie van het bedrijf zijn gemaakt en zelden, soms nooit, systematisch worden herzien en bijgewerkt. Aangezien bestelpunten een belangrijke bepalende factor zijn voor serviceniveaus, volgt hieruit dat serviceniveaus "gewoon gebeuren". Voorraadoptimalisatiesoftware kan uw huidige bestelpunten en doorlooptijden omzetten in solide schattingen van uw huidige serviceniveaus. Deze analyse onthult vaak een subset van items met een te hoog of te laag serviceniveau, in welk geval u advies heeft over welke items respectievelijk naar beneden of naar boven moeten worden bijgesteld.

                  Bevoorradingstermijnen:
                  Sommige bedrijven passen de serviceniveaus daarop aan aanvulling levertijden. Als het lang duurt om een artikel te maken of te kopen, dan duurt het ook lang om van een tekort te herstellen. Dienovereenkomstig verhogen ze de serviceniveaus voor artikelen met een lange doorlooptijd en verlagen ze deze voor artikelen waarvoor de achterstand kort zal zijn.

                  Kostenbeperkingen:
                  Voorraadoptimalisatiesoftware kan de goedkoopste manieren vinden om hoge serviceniveaudoelen te halen, maar agressieve doelen impliceren onvermijdelijk hogere kosten. Het kan zijn dat de kosten uw keuze van serviceniveaudoelen beperken. Kosten zijn er in verschillende smaken. "Voorraadinvestering" is de dollarwaarde van de voorraad. "Bedrijfskosten" omvatten zowel voorraadkosten als bestelkosten. Beperkingen op voorraadinvesteringen worden vaak opgelegd aan voorraadmanagers en impliceren altijd plafonds op serviceniveaudoelstellingen; software kan deze relaties expliciet maken, maar neemt de noodzaak van keuze niet weg. Je hoort minder vaak over plafonds voor bedrijfskosten, maar ze zijn altijd op zijn minst een secundaire factor die pleit voor lagere serviceniveaus.

                  Tekort kosten:
                  Tekortkosten zijn afhankelijk van het feit of uw tekortbeleid vraagt om nabestellingen of verloren verkopen. In beide gevallen werken tekortkosten de voorraadinvesteringen en bedrijfskosten tegen door te pleiten voor hogere serviceniveaus. Deze kosten worden niet altijd uitgedrukt in dollars, zoals in het geval van medische/chirurgische benodigdheden, waar tekortkosten worden uitgedrukt in morbiditeit en mortaliteit.

                  Concurrentie:
                  Hoe dichter uw bedrijf bij het domineren van de markt is, hoe meer u de serviceniveaus kunt verlagen om geld te besparen. Te ver terugvallen brengt echter risico's met zich mee: het moedigt potentiële klanten aan om ergens anders te zoeken en het moedigt concurrenten aan. Omgekeerd kan een hoge productbeschikbaarheid de positie van een kleine speler ver versterken.

                  Gezamenlijke targeting

                  Voorraadmanagers kunnen degenen zijn die belast zijn met het stellen van serviceniveaudoelen, maar het kan het beste zijn om samen te werken met andere functies bij het maken van deze oproepen. De financiële afdeling kan al vroeg in het proces eventuele "rode lijnen" delen, en zij zouden de taak moeten krijgen om de bewaar- en bestelkosten te schatten. Verkoop kan helpen bij het inschatten van tekortkosten door de waarschijnlijke reacties van klanten op achterstanden of verloren verkopen uit te leggen.

                  De rol van software voor voorraadoptimalisatie en planning

                  Zonder voorraadoptimalisatiesoftware is het stellen van serviceniveaudoelen puur giswerk: het is onmogelijk om te weten hoe een bepaald doel zal uitpakken in termen van voorraadinvesteringen, bedrijfskosten, tekortkosten. De software kan de gedetailleerde, kwantitatieve afwegingscurven berekenen die nodig zijn om weloverwogen keuzes te maken of zelfs het beoogde serviceniveau aan te bevelen dat resulteert in de laagste totale kosten, rekening houdend met bewaarkosten, bestelkosten en voorraadkosten. Niet alle softwareoplossingen zijn echter hetzelfde. U kunt een door de gebruiker gedefinieerd 99%-serviceniveau in uw voorraadplanningssysteem invoeren of het systeem kan een doelservice aanbevelen, maar dit betekent niet dat u dat vermelde serviceniveau daadwerkelijk bereikt. Sterker nog, u komt er misschien niet eens in de buurt en bereikt een veel lager serviceniveau. We hebben situaties waargenomen waarin een beoogd serviceniveau van 99% daadwerkelijk een serviceniveau van slechts 82% bereikte! Alle beslissingen die worden genomen als gevolg van het doelwit zullen resulteren in een onbedoelde verkeerde toewijzing van voorraad, zeer kostbare gevolgen en veel uitleg.Bekijk dus zeker ons blogartikel over hoe u de nauwkeurigheid van uw serviceniveauprognose kunt meten zodat u deze kostbare fout niet maakt.

                  Volume- en kleurvakken in een magazijn

                   

                  Laat een reactie achter

                  gerelateerde berichten

                  Hebben uw statistische prognoses last van het wiggle-effect?

                  Hebben uw statistische prognoses last van het wiggle-effect?

                  Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

                  Hoe om te gaan met statistische prognoses van nul

                  Hoe om te gaan met statistische prognoses van nul

                  Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

                  recente berichten

                  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
                  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
                    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
                  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
                    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
                  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
                    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]