Beoordelen hoe leveranciers uw voorraadkosten beïnvloeden

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Software voor voorraadoptimalisatie wordt meestal gebruikt om de analytische resultaten te verkrijgen die u nodig heeft om uw dagelijkse activiteiten uit te voeren, zoals bestelpunten (ook bekend als Mins) en bestelhoeveelheden. Deze gespecialiseerde software helpt u bij het vinden van de optimale balans tussen voorraadkosten en artikelbeschikbaarheid tijdens routinewerkzaamheden.

Voorraadoptimalisatiesoftware kan ook worden gebruikt om 'wat-als'-analyses uit te voeren op scenario's die wijzigingen in uw huidige bedrijfsomgeving beschrijven. Wat-als-analyse (ook wel "gevoeligheidsanalyse" genoemd) stelt u in staat uw denken te verheffen van tactisch naar strategisch. Het helpt u zich voor te stellen hoe u uw activiteiten moet aanpassen om u aan te passen aan mogelijke veranderingen in uw werkomgeving. Deze veranderingen kunnen negatieve druk zijn die van buitenaf op u wordt uitgeoefend, of ze kunnen het gevolg zijn van uw eigen positieve acties. In deze blog geven we een voorbeeld van hoe je “wat-analyse” kunt uitvoeren op doorlooptijden en bestelhoeveelheden. De resultaten van de analyse kunnen door het bedrijf worden gebruikt om de impact van deze wijzigingen op de voorraadkosten en de serviceniveauprestaties te beoordelen.

Hoe leveranciers uw bewegingsvrijheid beperken

 

Toen we met onze klanten de gegevensinvoer bespraken die nodig is voor voorraadoptimalisatiesoftware, merkten we dat leveranciers een prominente invloed hebben op hun activiteiten. Belangrijke onderwerpen als delen laten we voorlopig buiten beschouwing vraag prognoses met leveranciers en het uitwerken van reacties op verstoringen in de toeleveringsketen, zoals orkaan Matthew vorig jaar in het zuidoosten van de VS. In plaats daarvan richten we ons op twee meer gebruikelijke manieren waarop leveranciers de voorraadkosten van producenten beïnvloeden: doorlooptijden voor aanvulling en beperkingen op bestelhoeveelheden.

De doorlooptijd voor aanvulling is het aantal dagen dat verstrijkt tussen het bereiken of overschrijden van een bestelpunt door de voorraad en het verschijnen van aanvullingseenheden op voorraad. Een deel van de doorlooptijd is intern bij de producent, misschien als gevolg van trage reacties op een inkoopafdeling. De rest van de doorlooptijd is aan de leverancier. In deze discussie gaan we ervan uit dat de bijdrage van leveranciers aan doorlooptijden kan veranderen, ten goede of ten kwade. (Maar dezelfde resultaten kunnen van toepassing zijn op veranderingen in de bijdragen van producenten aan doorlooptijden.)

De beperkingen op bestelhoeveelheden die we beschouwen zijn bestelminima en bestelveelvouden. Misschien wilt u 3 eenheden van een artikel bestellen, maar de leverancier kan een minimale bestelgrootte van 6 eenheden opleggen, dus uw bestelling van 3 eenheden zou een bestelling van 6 eenheden moeten worden. Of misschien wilt u 21 eenheden bestellen, wat handig de minimale bestelgrootte van 6 eenheden overschrijdt, maar als de leverancier ook een veelvoud van 6 heeft, wat betekent dat elke bestelling een veelvoud van 6 eenheden moet zijn, dan moet uw bestelling van 21 eenheden worden verhoogd tot 24 eenheden.

Scenario-analyses

 

Om het gebruik van voorraadoptimalisatiesoftware voor wat-als-analyse te illustreren, onderzoeken we twee reeksen scenario's. In de eerste set variëren de doorlooptijden van -20% tot +20% van hun waarden in een basisscenario. In de tweede set worden de resultaten eerst berekend zonder leveranciersbeperkingen, vervolgens met alleen bestelminima en ten slotte met een combinatie van bestelminima en bestelveelvouden. Voor de berekeningen gebruiken we Smart Inventory Optimization software.

Het basisscenario maakt gebruik van real-world gegevens over 2.852 reserveonderdelen die worden beheerd door een vooruitstrevend openbaar vervoersbedrijf. Deze onderdelen hebben een zeer heterogene mix van attributen. Hun kosten per eenheid variëren van $1 tot $23.105, en hun doorlooptijden variëren tussen 1 dag en 300 dagen. Gedurende 24 maanden varieerde de gemiddelde vraag van minder dan 1 eenheid per maand tot 1.508 eenheden per maand, met variatiecoëfficiënten variërend van een beheersbare 10% tot een enge 2.171%. Bovendien is het leveranciersbeeld ook erg complex, met 293 unieke leveranciers die elk gemiddeld ongeveer 10 onderdelen leveren. Deze heterogeniteit houdt in dat een real-world optimalisatie zou kiezen tussen items en leveranciers. Voor de eenvoud van uiteenzetting en om basisinzichten te ontwikkelen, behandelen onze wat-als-scenario's in dit voorbeeld echter elk artikel en elke leverancier gelijk. Evenzo gingen we er in de basislijn van uit dat de bewaarkosten gelijk waren aan 20% van de dollarwaarde van een artikel en dat elke aanvullingsorder vaste kosten had van $40.

We hebben twee wat-als-experimenten uitgevoerd. In de eerste werd gekeken naar de effecten van veranderende doorlooptijden. De tweede onderzocht de effecten van het invoeren van beperkingen op bestelhoeveelheden. In elk experiment hebben we de effecten van de wijzigingen op twee operationele statistieken vastgelegd: gemiddeld aantal eenheden op voorraad en gemiddeld aantal bestellingen per jaar. Deze beïnvloedden op hun beurt vier financiële maatstaven: gemiddelde dollarwaarde van voorraad, gemiddelde voorraadkosten, gemiddelde bestelkosten en de som van de laatste twee, de totale bedrijfskosten van de voorraad.

In alle scenario's werden bestelpunten berekend om een waarschijnlijkheid van 95% te bereiken om stockouts te vermijden in afwachting van aanvulling. Bestelhoeveelheden, bij afwezigheid van leveranciersbeperkingen, werden berekend als wat we "haalbare EOQ" noemen. EOQ is de klassieke "economische bestelhoeveelheid" die wordt geleerd in inventaris 101; het wordt berekend op basis van de gemiddelde vraag, bewaarkosten en bestelkosten. Haalbare EOQ voegt een extra overweging toe: voorraaddynamiek. Als het bestelpunt erg laag is, is het mogelijk dat de EOQ te klein is om een stabiel, positief voorraadniveau te behouden. In deze gevallen verhoogt de haalbare EOQ de bestelhoeveelheid boven de EOQ om ervoor te zorgen dat de gemiddelde voorraad niet negatief wordt.

Effecten van veranderende doorlooptijden

Tabel 1 toont de resultaten van het wijzigen van de doorlooptijden. Rondom het basisscenario hebben we de doorlooptijd van elk artikel gewijzigd met -20%, -10%, +10% en +20%.

Het is geen verrassing dat het verkorten van de doorlooptijden het vereiste voorraadniveau verlaagde en het verhogen ervan het tegenovergestelde deed. Zowel het gemiddelde aantal eenheden als de bijbehorende dollarwaarde gedroeg zich zoals verwacht. Wat misschien verrassend is, is dat de effecten enigszins gedempt waren, dat wil zeggen dat een verandering van X procent in doorlooptijd een respons van minder dan X procent opleverde. Een verkorting van de doorlooptijd in 20% zorgde bijvoorbeeld voor slechts een vermindering van 7,9% in de voorhanden voorraad en slechts een vermindering van 12,0% in de dollarwaarde van die eenheden. Bovendien zijn de effecten van verlagingen en verhogingen asymmetrisch: een toename van de doorlooptijd met 20% leidde tot een toename van slechts 7,3% in eenheden (versus 7,9%) en slechts een stijging van de voorraadwaarde met 9,6% (versus 12.0%).

Vergelijkbare verzwakte en asymmetrische resultaten aangehouden voor bedrijfskosten. Een verkorting van de doorlooptijd in 20% verlaagde de totale bedrijfskosten met 7.0%, maar een toename in doorlooptijd in 20% veroorzaakte slechts een stijging van de bedrijfskosten met 5.1%.

Overweeg nu de implicaties van deze resultaten voor de praktijk. In een competitieve wereld zijn kostenbesparingen in de orde van grootte van 10% of zelfs 5% aanzienlijk. Dit betekent dat inspanningen om doorlooptijden te verkorten belangrijke voordelen kunnen hebben. Dit betekent op zijn beurt dat inspanningen om inkoopprocessen te stroomlijnen de moeite waard kunnen zijn. Evenzo is er reden om leveranciers te betrekken bij het verkorten van hun deel van de doorlooptijd, mogelijk door de besparingen te delen om hen te stimuleren.

 

Voorraadoptimalisatie - Effecten van veranderende doorlooptijden
Tabel 1: Effecten van veranderende doorlooptijden

Effect van beperkingen op bestelhoeveelheid

 

Tabel 2 toont het effect van het opleggen van leveranciersbeperkingen op bestelhoeveelheden. In het basisscenario zijn er geen beperkingen, dwz het bestelminimum is 0 en het bestelveelvoud is 1, wat inhoudt dat elke bestelhoeveelheid acceptabel is voor leveranciers. Weg van het basisscenario, hebben we eerst gekeken naar het opleggen van een bestelminimum van 5 eenheden voor alle artikelen, en vervolgens een bestelveelvoud van 5 toe te voegen voor alle artikelen.

Het forceren van bestellingen om groter te zijn dan ze anders zouden zijn, had de verwachte impact op het gemiddelde aantal beschikbare eenheden, door het met 0,9% te verhogen met alleen een minimumbestelling en met 3,4% met zowel een minimum als een veelvoud. De overeenkomstige veranderingen in de dollarwaarde van de inventaris waren dramatischer: 22.4% en 23.3%. Dit verschil in de grootte van het responspercentage is waarschijnlijk terug te voeren op het grote aantal vervangende onderdelen met een laag volume/hoge kosten dat door het openbaar vervoerbedrijf wordt beheerd.

Een andere verrassing was de netto verlaging van de bedrijfskosten toen leveranciersbeperkingen werden opgelegd. Terwijl de voorraadkosten stegen met 22,4% en 23,3% in de twee wat-als-scenario's, lieten de grotere bestelhoeveelheden minder bestellingen per jaar toe, wat resulteerde in een compenserende verlaging van de bestelkosten van respectievelijk -24,4% en -32,7%. De netto-effecten op de bedrijfskosten waren toen verlagingen van 3,7% en 7,9%.

Over het algemeen wordt verwacht dat het opleggen van beperkingen aan acties van producenten de prestaties vermindert. De resultaten in deze scenario's waren dus contra-intuïtief. De echte boodschap hier is echter dat het gebruik van EOQ, of zelfs verbeterde EOQ, om een bestelhoeveelheid in te stellen geen optimale resultaten oplevert. Paradoxaal genoeg lijken de door ons onderzochte beperkingen van de bestelhoeveelheid de bestelhoeveelheden dichter bij het optimale niveau te hebben gebracht.

 

Voorraadoptimalisatie - Effect van beperking van de bestelhoeveelheid
Tabel 2: Effect van beperkingen op bestelhoeveelheid

Conclusies

 

De hier getoonde wat-als-analyses leiden niet tot universele conclusies. Als u bijvoorbeeld de veronderstelde kosten per bestelling wijzigt van $40 naar een kleiner aantal, kan dit aantonen dat de leveranciersbeperkingen de voorraadkosten van de producent hebben verhoogd in plaats van verlaagd.

Bij het uitvoeren van wat-als-analyses in echte situaties, zouden gebruikers natuurlijk scenario's maken op een lager detailniveau. Ze kunnen bijvoorbeeld het effect van wijzigingen in de doorlooptijden van leveranciers per leverancier evalueren om diegene te vinden die de hoogste potentiële uitbetalingen zouden opleveren. Of ze kunnen ervoor zorgen dat bestelminima, als ze al voor alle artikelen bestaan, met een bepaald percentage veranderen in plaats van met een vast bedrag, wat misschien wat realistischer is.

De belangrijkste conclusie is dat software voor voorraadoptimalisatie kan worden gebruikt in de "wat-als-modus" om strategische kwesties te onderzoeken, naast het gebruikelijke gebruik om bestelpunten, veiligheidsvoorraden, bestelhoeveelheden en voorraadoverdrachten te berekenen.

Laat een reactie achter

gerelateerde berichten

Omgaan met extreme supply chain-variaties bij Rev-A-Shelf

Omgaan met extreme supply chain-variaties bij Rev-A-Shelf

Heeft uw uitgebreide toeleveringsketen last van extreme seizoensvariabiliteit? Vormt deze situatie een uitdaging voor uw vermogen om te voldoen aan de serviceniveauverplichtingen aan uw klanten? Ik heb hiermee geworsteld bij Rev-A-Shelf, waarbij ik me bezig hield met ongebruikelijke omstandigheden die zijn gecreëerd door Chinees Nieuwjaar en andere wereldwijde evenementen, en ik wil graag de ervaring en een paar dingen die ik onderweg heb geleerd delen.

Aanbevolen lectuur: Cloudsoftware helpt budgetbeperkingen te overwinnen

Aanbevolen lectuur: Cloudsoftware helpt budgetbeperkingen te overwinnen

Smart Software heeft onlangs een Software as a Service (SaaS)-optie aangekondigd voor SmartForecasts—SFCloud™. Op locatie gebaseerde eeuwigdurende licenties zullen voor veel organisaties de voorkeursmethode voor software-implementatie blijven, maar er zijn veel redenen waarom de vraag naar cloudgebaseerde oplossingen een vlucht neemt. Een oud bericht van Bill Richardson op ApplicantStack Team Blog vat de belangrijkste voordelen van het SaaS-model samen.

Waarheid in prognoses: praktisch advies aan het einde van het jaar

Waarheid in prognoses: praktisch advies aan het einde van het jaar

Aan het einde van het jaar zijn we vaak bezig met nadenken en plannen maken voor het komende jaar. Is 2013 verlopen zoals je had verwacht? Zal 2014 dramatisch anders zijn? Zijn er andere factoren - dingen die we van plan zijn te doen; dingen waarvan we denken dat onze concurrenten ze zouden kunnen doen; krachten van buitenaf, zoals veranderende smaak, demografie of economie, die de gang van zaken in het komende jaar kunnen veranderen?

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      De omzet verhogen door de beschikbaarheid van reserveonderdelen te vergroten

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Laten we beginnen met in te zien dat een hogere omzet een goede zaak voor u is, en dat het vergroten van de beschikbaarheid van de reserveonderdelen die u levert een goede zaak is voor uw klanten.

      Maar laten we ook erkennen dat een toenemende beschikbaarheid van artikelen niet noodzakelijkerwijs leidt tot hogere inkomsten. Als u verkeerd plant en uiteindelijk overtollige voorraad aanhoudt, kan het netto-effect goed zijn voor uw klanten, maar zeker slecht voor u. Er moet een goede manier zijn om dit tot een win-win te maken, als het maar kan worden herkend.

      Om hier de juiste beslissing te nemen, moet u systematisch over het probleem nadenken. Dat vereist dat u probabilistische modellen van het voorraadbeheerproces gebruikt.

       

      Een scenario

      Laten we eens kijken naar een specifiek, realistisch scenario. Heel wat factoren zijn van invloed op de resultaten:

      • Het artikel: een specifiek reserveonderdeel voor een klein volume.
      • Vraaggemiddelde: gemiddeld 0,1 eenheden per dag (dus zeer "intermitterend")
      • Standaardafwijking van de vraag: 0,35 eenheden per dag (dus zeer variabel of "oververspreid").
      • Gemiddelde doorlooptijd leverancier: 5 dagen.
      • Eenheidsprijs: $100.
      • Bewaarkosten per jaar als % van eenheidskosten: 10%.
      • Bestelkosten per PO-snede: $25.
      • Gevolgen stockout: omzetverlies (dus een competitieve markt, geen backorders).
      • Tekortkosten per verloren verkoop: $100.
      • Doelstelling serviceniveau: 85% (dus 15% kans op een stockout in elke aanvullingscyclus).
      • Voorraadbeheerbeleid: Periodieke beoordeling/Order-up-to (ook wel at (T,S)-beleid genoemd)

       

      Voorraadbeheerbeleid

      Een woord over het voorraadbeheerbeleid. Het (T,S)-beleid is een van de vele die in de praktijk gebruikelijk zijn. Hoewel er andere, efficiëntere beleidsregels zijn (ze wachten bijvoorbeeld niet tot T dagen zijn verstreken voordat ze de voorraad aanpassen), is (T,S) een van de eenvoudigste en daarom behoorlijk populair. Het werkt als volgt: elke T dagen controleer je hoeveel eenheden je op voorraad hebt, zeg X eenheden. Vervolgens bestelt u SX-eenheden, die verschijnen na de doorlooptijd van de leverancier (in dit geval 5 dagen). De T in (T,S) is het "bestelinterval", het aantal dagen tussen bestellingen; de S is het "order-up-to-niveau", het aantal eenheden dat u bij de hand wilt hebben aan het begin van elke aanvullingscyclus.

      Om het meeste uit dit beleid te halen, moet u verstandig waarden van T en S kiezen. Verstandig kiezen betekent dat u niet kunt winnen door te raden of door eenvoudige vuistregels te gebruiken, zoals "Houd een gemiddelde van 3 x de gemiddelde vraag bij de hand." Slechte keuzes van T en S schaden zowel uw klanten als uw bedrijfsresultaten. En te lang vasthouden aan keuzes die ooit goed waren, kan resulteren in slechte prestaties als een van de bovenstaande factoren aanzienlijk verandert, dus de waarden van T en S moeten zo nu en dan opnieuw worden berekend.

      De slimme manier om de juiste waarden van T en S te kiezen, is door probabilistische modellen te gebruiken die zijn gecodeerd in geavanceerde software. Het gebruik van software is essentieel wanneer u moet opschalen en waarden van T en S moet kiezen die geschikt zijn voor niet één item, maar voor honderden of duizenden.

       

      Analyse van scenario

      Laten we eens kijken hoe we in dit scenario geld kunnen verdienen. Wat is het voordeel? Als er geen kosten zouden zijn, zou deze post gemiddeld $3.650 per jaar kunnen genereren: 0,1 eenheden/dag x 365 dagen x $100/eenheid. Daarvan worden de bedrijfskosten afgetrokken, bestaande uit voorraad-, bestel- en tekortkosten. Elk van deze zal afhangen van uw keuzes van T en S.

      De software geeft specifieke getallen: het instellen van T = 321 dagen en S = 40 eenheden resulteert in gemiddelde jaarlijkse bedrijfskosten van $604, wat een verwachte marge oplevert van $3.650 – $604 = $3.046. Zie tabel 1, linkerkolom. Dit gebruik van software wordt 'voorspellende analyse' genoemd omdat het input van het systeemontwerp vertaalt in schattingen van een belangrijke prestatie-indicator, marge.

      Bedenk nu of u het beter kunt doen. Het doel van het serviceniveau in dit scenario is 85%, wat een enigszins ontspannen standaard is die geen aandacht zal trekken. Wat als u uw klanten een 99%-serviceniveau zou kunnen bieden? Dat klinkt als een duidelijk concurrentievoordeel, maar zou het uw marge verminderen? Niet als je de waarden van T en S goed aanpast.

      Door T = 216 dagen en S = 35 eenheden in te stellen, worden de gemiddelde jaarlijkse bedrijfskosten verlaagd tot $551 en wordt de verwachte marge verhoogd tot $3.650 – $551 = $3.099. Zie tabel 1, rechterkolom. Dit is de win-win die we wilden: hogere klanttevredenheid en ongeveer 2% meer omzet. Dit gebruik van de software wordt "gevoeligheidsanalyse" genoemd omdat het laat zien hoe gevoelig de marge is voor de keuze van het serviceniveaudoel.

      Software kan u ook helpen de complexe, willekeurige dynamiek van voorraadbewegingen te visualiseren. Een bijproduct van de analyse die tabel 1 vulde, zijn grafieken die de willekeurige paden laten zien die door de voorraad worden afgelegd terwijl deze afneemt gedurende een aanvullingscyclus. Figuur 1 toont een selectie van 100 willekeurige scenario's voor het scenario waarin de service level target 99% is. In de figuur resulteerde slechts 1 van de 100 scenario's in een stockout, wat de juistheid van de keuze voor order-up-to-level bevestigt.

       

      Overzicht

      Het beheer van voorraden reserveonderdelen wordt vaak lukraak gedaan met behulp van onderbuikgevoel, gewoonte of verouderde vuistregel. Op deze manier doorgaan is geen betrouwbaar en reproduceerbaar pad naar een hogere marge of hogere klanttevredenheid. Waarschijnlijkheidstheorie, gedestilleerd tot waarschijnlijkheidsmodellen en vervolgens gecodeerd in geavanceerde software, vormt de basis voor coherente, efficiënte richtlijnen voor het beheren van reserveonderdelen op basis van feiten: vraagkenmerken, doorlooptijden, serviceniveaudoelen, kosten en andere factoren. De hier geanalyseerde scenario's illustreren dat het mogelijk is om zowel een hoger serviceniveau als een hogere marge te realiseren. Een groot aantal scenario's die hier niet worden weergegeven, biedt manieren om hogere serviceniveaus te bereiken, maar marge te verliezen. Gebruik de software.

      Scenario's met verschillende serviceniveaudoelen

      Voorraad bij de hand tijdens één aanvulcyclus

       

       

      Laat een reactie achter

      gerelateerde berichten

      Omgaan met extreme supply chain-variaties bij Rev-A-Shelf

      Omgaan met extreme supply chain-variaties bij Rev-A-Shelf

      Heeft uw uitgebreide toeleveringsketen last van extreme seizoensvariabiliteit? Vormt deze situatie een uitdaging voor uw vermogen om te voldoen aan de serviceniveauverplichtingen aan uw klanten? Ik heb hiermee geworsteld bij Rev-A-Shelf, waarbij ik me bezig hield met ongebruikelijke omstandigheden die zijn gecreëerd door Chinees Nieuwjaar en andere wereldwijde evenementen, en ik wil graag de ervaring en een paar dingen die ik onderweg heb geleerd delen.

      Aanbevolen lectuur: Cloudsoftware helpt budgetbeperkingen te overwinnen

      Aanbevolen lectuur: Cloudsoftware helpt budgetbeperkingen te overwinnen

      Smart Software heeft onlangs een Software as a Service (SaaS)-optie aangekondigd voor SmartForecasts—SFCloud™. Op locatie gebaseerde eeuwigdurende licenties zullen voor veel organisaties de voorkeursmethode voor software-implementatie blijven, maar er zijn veel redenen waarom de vraag naar cloudgebaseerde oplossingen een vlucht neemt. Een oud bericht van Bill Richardson op ApplicantStack Team Blog vat de belangrijkste voordelen van het SaaS-model samen.

      Waarheid in prognoses: praktisch advies aan het einde van het jaar

      Waarheid in prognoses: praktisch advies aan het einde van het jaar

      Aan het einde van het jaar zijn we vaak bezig met nadenken en plannen maken voor het komende jaar. Is 2013 verlopen zoals je had verwacht? Zal 2014 dramatisch anders zijn? Zijn er andere factoren - dingen die we van plan zijn te doen; dingen waarvan we denken dat onze concurrenten ze zouden kunnen doen; krachten van buitenaf, zoals veranderende smaak, demografie of economie, die de gang van zaken in het komende jaar kunnen veranderen?

      recente berichten

      • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          Smart Software VP Research presenteert op het MORS Symposium en op het Emerging Techniques Forum

          Smart Software heeft vandaag aangekondigd dat zijn mede-oprichter en Senior VP of Research, Dr. Thomas Willemain, is geselecteerd om te presenteren op het prestigieuze Emerging Techniques Forum op 7-9 december 2021, en ook op het 89e MORS Symposium op 21 juni. 25, 2021. MORS is de Military Operations Research Society, gefinancierd door de marine, het leger, de luchtmacht, het Korps Mariniers, het kantoor van de minister van Defensie en het ministerie van Binnenlandse Veiligheid. Haar missie is het verbeteren van de kwaliteit van de analyse die de nationale en binnenlandse veiligheidsbeslissingen informeert.

          1) MORS Virtual Symposium biedt de defensie-analytische gemeenschap uitgebreide inhoud over opkomende analytische onderwerpen en technieken. De focus voor het 89e MORS-symposium zal zijn "Analytics om de besluitvorming te verbeteren". Willemaine presenteert dit jaar vier sessies:

          Hoogdimensionale gegevensverkenning met behulp van slangen

          The Snake is een nieuwe analysetool die de aanwezigheid van clusters kan detecteren en hun aantal kan schatten. Slangen bieden een unieke en gemakkelijk te interpreteren visuele weergave van de structuur van hoogdimensionale gegevens.

          Toevalligheden: signaal of ruis?

          We willen weten of het gelijktijdig optreden van twee gebeurtenissen, dus een toeval, slechts een toevallige gebeurtenis is. Zo niet, dan is er mogelijk een exploiteerbaar verband tussen de gebeurtenissen. We stellen uitgebreidere tests voor op basis van modellen van gebeurtenissen die autocorrelatie, trend en seizoensgebondenheid verklaren. 

          Genereren van visuele scenario's voor gebruik in de opleiding van operators

          De training van operators wordt verbeterd door blootstelling aan scenario's die gegevensstromen uit de echte wereld weergeven. Goed afgestemde bootstraps voor tijdreeksen kunnen univariate en multivariate scenario's creëren die voldoen aan kwantiteits-, kosten-, betrouwbaarheids- en variëteitsnormen. 

          Testen op gelijkheid van meerdere distributies in hoge dimensies

          Een fundamentele test- en evaluatieanalysetaak is het zoeken naar verschillen tussen alternatieve systemen of processen. Verschillende nieuwe, op bomen gebaseerde statistieken werken goed voor effecten die meerdere effecten hebben op zowel MVN- als niet-MVN-gegevens.

           

          2) Het Forum voor opkomende technieken biedt de analytische gemeenschap op defensiegebied uitgebreide inhoud over opkomende analytische onderwerpen en technieken. Willemain zal als een van de weinige experts spreken in de Augmented Decision Making-track. 

          Het onderwerp van Dr. Willemain zal zijn "Omgaan met regimeveranderingen in logistieke operaties".

          Military Operations Research Society (MORS) Forum voor opkomende technieken

           

          Het onderzoek van Dr. Thomas Willemain bij Smart Software en Rensselaer Polytechnic Institute helpt bij het voortdurend innoveren van Smart IP&O, het multi-tenant webgebaseerde platform van het bedrijf voor prognoses, voorraadplanning en optimalisatie.

           

           

          Over Smart Software, Inc.

          Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disneyland Resorts, Metro-North Railroad en het Amerikaanse Rode Kruis. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

           

          SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


          Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
          Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

           

           

          Vier handige manieren om prognosefouten te meten

          De slimme voorspeller

           Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

          In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door prognosefouten te meten. We beginnen met een overzicht van de verschillende soorten foutstatistieken: schaalafhankelijke fout, procentuele fout, relatieve fout en schaalvrije foutstatistieken. Hoewel sommige fouten onvermijdelijk zijn, zijn er manieren om deze te verminderen, en prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid. Vervolgens zullen we het speciale probleem van de intermitterende vraag en de deel-door-nul-problemen uitleggen. Tom besluit door uit te leggen hoe je prognoses van meerdere items kunt beoordelen en hoe het vaak zinvol is om gewogen gemiddelden te gebruiken, waarbij items verschillend worden gewogen op basis van volume of omzet.

           

          Vier algemene typen foutstatistieken 

          1. Schaalafhankelijke fout
          2. Percentage fout
          3. Relatieve fout
          4. Schaalvrije fout

          Opmerking: Schaalafhankelijke metrieken worden uitgedrukt in de eenheden van de voorspelde variabele. De andere drie worden uitgedrukt als percentages.

           

          1. Schaalafhankelijke foutstatistieken

          • Mean Absolute Error (MAE) ook wel Mean Absolute Deviation (MAD) genoemd
          • Mediane absolute fout (MdAE)
          • Root Mean Square-fout (RMSE)
          • Deze statistieken drukken de fout uit in de oorspronkelijke eenheden van de gegevens.
            • Bijv: eenheden, kisten, vaten, kilogrammen, dollars, liters, enz.
          • Aangezien prognoses te hoog of te laag kunnen zijn, zullen de tekenen van de fouten zowel positief als negatief zijn, waardoor ongewenste annuleringen mogelijk zijn.
            • Bijv.: u wilt niet dat fouten van +50 en -50 worden geannuleerd en "geen fout" weergeven.
          • Om het annuleringsprobleem aan te pakken, nemen deze statistieken negatieve tekens weg door kwadratuur of absolute waarde te gebruiken.

           

          2. Percentage foutmetriek

          • Gemiddelde absolute procentuele fout (MAPE)
          • Deze metriek drukt de grootte van de fout uit als een percentage van de werkelijke waarde van de voorspelde variabele.
          • Het voordeel van deze aanpak is dat het meteen duidelijk maakt of de fout een groot probleem is of niet.
          • Bijv.: stel dat de MAE 100 eenheden is. Is een typische fout van 100 eenheden verschrikkelijk? OK? groot?
          • Het antwoord hangt af van de grootte van de variabele die wordt voorspeld. Als de werkelijke waarde 100 is, dan is een MAE = 100 zo groot als het ding dat wordt voorspeld. Maar als de werkelijke waarde 10.000 is, dan toont een MAE = 100 een grote nauwkeurigheid, aangezien de MAPE slechts 1% is van de werkelijke waarde.

           

          3. Relatieve foutmetriek

          • Mediane relatieve absolute fout (MdRAE)
          • Ten opzichte van wat? Naar een benchmarkprognose.
          • Welke maatstaf? Meestal de "naïeve" voorspelling.
          • Wat is de naïeve voorspelling? Volgende prognosewaarde = laatste werkelijke waarde.
          • Waarom de naïeve voorspelling gebruiken? Want als je daar niet tegen kunt, zit je in een zware vorm.

           

          4. Schaalvrije foutmetriek

          • Mediane relatief geschaalde fout (MdRSE)
          • Deze statistiek drukt de absolute voorspellingsfout uit als een percentage van het natuurlijke niveau van willekeur (volatiliteit) in de gegevens.
          • De volatiliteit wordt gemeten door de gemiddelde grootte van de verandering in de voorspelde variabele van de ene tijdsperiode naar de volgende.
            • (Dit is dezelfde als de fout gemaakt door de naïeve voorspelling.)
          • Hoe verschilt deze statistiek van de bovenstaande MdRAE?
            • Ze gebruiken allebei de naïeve prognose, maar deze statistiek gebruikt fouten bij het voorspellen van de vraaggeschiedenis, terwijl de MdRAE fouten gebruikt bij het voorspellen van toekomstige waarden.
            • Dit is van belang omdat er meestal veel meer historische waarden zijn dan er voorspellingen zijn.
            • Dat is op zijn beurt weer van belang omdat deze statistiek zou "ontploffen" als alle gegevens nul waren, wat minder waarschijnlijk is bij gebruik van de vraaggeschiedenis.

           

          Intermittent Demand Planning en Parts Forecasting

           

          Het speciale probleem van intermitterende vraag

          • "Intermitterende" vraag heeft veel nul-eisen vermengd met willekeurige niet-nul-eisen.
          • MAPE wordt geruïneerd wanneer fouten worden gedeeld door nul.
          • MdRAE kan ook kapot gaan.
          • MdSAE zal minder snel kapot gaan.

           

          Samenvatting en opmerkingen

          • Prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid.
          • Er zijn twee hoofdklassen van statistieken: absoluut en relatief.
          • Absolute metingen (MAE, MdAE, RMSE) zijn natuurlijke keuzes bij het beoordelen van prognoses van één item.
          • Relatieve metingen (MAPE, MdRAE, MdSAE) zijn nuttig bij het vergelijken van de nauwkeurigheid tussen items of tussen alternatieve prognoses van hetzelfde item of bij het beoordelen van de nauwkeurigheid ten opzichte van de natuurlijke variabiliteit van een item.
          • Intermitterende vraag levert problemen met delen door nul op die MdSAE verkiezen boven MAPE.
          • Bij het beoordelen van prognoses van meerdere items is het vaak zinvol om gewogen gemiddelden te gebruiken, waarbij items anders worden gewogen op basis van volume of omzet.
          Laat een reactie achter

          RECENTE BERICHTEN

          Hoe u voorraadvereisten kunt voorspellen

          Hoe u voorraadvereisten kunt voorspellen

          Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag.

          Uitleggen wat 'serviceniveau' betekent in uw voorraadoptimalisatiesoftware

          Uitleggen wat 'serviceniveau' betekent in uw voorraadoptimalisatiesoftware

          Navigeren door de fijne kneepjes van voorraadaanbevelingen kan vaak leiden tot vragen over de juistheid en betekenis ervan. Een recent onderzoek van een van onze klanten leidde tot een verhelderende discussie over de nuances van serviceniveaus en bestelpunten. Tijdens een teamvergadering hebben we ongebruikelijke hiaten vastgesteld tussen onze Smart-suggested reorder points (ROP) op een 99%-serviceniveau en de huidige ROP van de klant. In deze post ontrafelen we het concept van een "99%-serviceniveau" en de implicaties ervan voor voorraadoptimalisatie, waarbij we licht werpen op hoe timing en onmiddellijke voorraadbeschikbaarheid een cruciale rol spelen bij het voldoen aan de verwachtingen van de klant en concurrerend blijven in diverse industrieën.

          Geef tekorten niet de schuld aan problematische doorlooptijden.

          Geef tekorten niet de schuld aan problematische doorlooptijden.

          Vertragingen in de doorlooptijd en variabiliteit in de levering zijn dagelijkse realiteit in de toeleveringsketen, maar organisaties die voorraad hebben, worden vaak verrast wanneer een leverancier te laat is. Een effectief voorraadplanningsproces omarmt dit feit en ontwikkelt beleid dat effectief rekening houdt met deze onzekerheid. Natuurlijk zullen er momenten zijn dat vertragingen in de doorlooptijd uit het niets opduiken en een tekort veroorzaken. Maar meestal zijn de tekorten het gevolg van:

          recente berichten

          • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

              Omgaan met de stijgende vraag tijdens de rebound

              De slimme voorspeller

               Het nastreven van best practices op het gebied van vraagplanning,

              prognoses en voorraadoptimalisatie

              Veel van onze klanten die tijdens de pandemie de vraag zagen opdrogen, zien nu de vraag terugkeren. Sommigen zien een aanzienlijke stijging van de vraag. Andere klanten in kritieke sectoren zoals kunststoffen, biotechnologie, halfgeleiders en elektronica zagen de vraag al in april stijgen. Lees verder voor suggesties over hoe u met deze situaties om kunt gaan.

              Een stijgende vraag veroorzaakt meestal twee problemen: onvermogen om bestellingen uit te voeren en onvermogen om aanvulling te krijgen vanwege overbelasting van leveranciers. Deze situatie vereist veranderingen in de manier waarop u uw geavanceerde planningssoftware gebruikt. Hier zijn drie tips om u te helpen het hoofd te bieden.

               

              Tip #1: Beperk uw temporele focus

               

              In normale tijden (weet je nog?), impliceerden meer gegevens betere resultaten. Tegenwoordig vergiftigen oude gegevens uw berekeningen, omdat ze voorwaarden vertegenwoordigen die niet meer van toepassing zijn. Voorspellingen en andere berekeningen dient u te baseren op gegevens uit de huidige situatie. Waar gegevens uit het verleden moeten worden afgesneden, kan duidelijk zijn uit een grafiek van de gegevens, of u kunt besluiten een "redelijke" afkapdatum vast te stellen op basis van een consensus van collega's. Smart Software heeft machine learning-algoritmen ontwikkeld die automatisch identificeren hoeveel historische data optimaal aan het voorspellingsmodel moet worden ingevoerd. Let op deze verbeteringen aan de software die binnenkort wordt uitgerold. Voer in de tussentijd nauwkeurigheidstests uit met behulp van uitgestelde werkelijke waarden met verschillende historische startdatums. Smart's prognose versus werkelijke functie ondersteunt dit automatisch.

              Smart Demand Planner-prognoses vs. actueel rapport

               

              Tip #2: Verhoog je planningstempo

               

              Wanneer de activiteiten stabiel zijn, kunt u uw voorraadbeleid instellen en erop vertrouwen dat dit voor een lange tijd geschikt is. In turbulente tijden is het belangrijk om de frequentie van uw planningscycli te verhogen om te voorkomen dat oude beleidsinstellingen te ver wegdrijven van de optimale situatie.  Frequentere herijking van uw voorraadbeleid en prognoses betekent dat u sneller trends opmerkt die uw concurrentie zullen verrassen en u altijd een stap voor blijven. Met software die in staat is om automatisch optimale waarden te selecteren, kan al dat werk in één keer door de software worden gedaan. U moet die wijzigingen bekijken en mogelijk aanpassen, maar het is logisch om de software het grootste deel van het werk te laten doen.

               

              Tip #3: Doe meer wat-als-planning

               

              In turbulente tijden verwacht je misschien nog meer turbulentie in de toekomst. Door uw software te gebruiken voor wat-als-planning kunt u zich voorbereiden op veranderingen die mogelijk komen. Stel dat u contact heeft gehad met een belangrijke leverancier die erop wijst dat ze mogelijk de prijzen verhogen of hun leveringsschema's moeten verschuiven. Door de software verschillende inputs te geven, kunt u noodplannen maken. Als de prijzen stijgen, kunt u zien hoe reageren door het wijzigen van bestelhoeveelheden van invloed zou zijn op uw voorraadkosten en voorraadinvesteringen. Als de doorlooptijden oplopen, kunt u zien wat de impact zou zijn op de artikelbeschikbaarheid. Deze voorkennis helpt u erachter te komen wat uw tegenbewegingen zouden zijn voordat de crisis toeslaat.

              Als er ooit een tijd is geweest dat we op de automatische piloot konden cruisen, dan is het wel in de achteruitkijkspiegel. Uw organisatie, die een explosieve groei doormaakt, heeft veel uitdagingen. Oude antwoorden zijn achterhaald; nieuwe antwoorden moeten ergens vandaan komen, snel. Geavanceerde software die gebruikmaakt van probabilistische voorspelling kan helpen, samen met veranderingen in planningsprocessen.

               

              Laat een reactie achter

              gerelateerde berichten

              Omgaan met extreme supply chain-variaties bij Rev-A-Shelf

              Omgaan met extreme supply chain-variaties bij Rev-A-Shelf

              Heeft uw uitgebreide toeleveringsketen last van extreme seizoensvariabiliteit? Vormt deze situatie een uitdaging voor uw vermogen om te voldoen aan de serviceniveauverplichtingen aan uw klanten? Ik heb hiermee geworsteld bij Rev-A-Shelf, waarbij ik me bezig hield met ongebruikelijke omstandigheden die zijn gecreëerd door Chinees Nieuwjaar en andere wereldwijde evenementen, en ik wil graag de ervaring en een paar dingen die ik onderweg heb geleerd delen.

              Aanbevolen lectuur: Cloudsoftware helpt budgetbeperkingen te overwinnen

              Aanbevolen lectuur: Cloudsoftware helpt budgetbeperkingen te overwinnen

              Smart Software heeft onlangs een Software as a Service (SaaS)-optie aangekondigd voor SmartForecasts—SFCloud™. Op locatie gebaseerde eeuwigdurende licenties zullen voor veel organisaties de voorkeursmethode voor software-implementatie blijven, maar er zijn veel redenen waarom de vraag naar cloudgebaseerde oplossingen een vlucht neemt. Een oud bericht van Bill Richardson op ApplicantStack Team Blog vat de belangrijkste voordelen van het SaaS-model samen.

              Waarheid in prognoses: praktisch advies aan het einde van het jaar

              Waarheid in prognoses: praktisch advies aan het einde van het jaar

              Aan het einde van het jaar zijn we vaak bezig met nadenken en plannen maken voor het komende jaar. Is 2013 verlopen zoals je had verwacht? Zal 2014 dramatisch anders zijn? Zijn er andere factoren - dingen die we van plan zijn te doen; dingen waarvan we denken dat onze concurrenten ze zouden kunnen doen; krachten van buitenaf, zoals veranderende smaak, demografie of economie, die de gang van zaken in het komende jaar kunnen veranderen?

              recente berichten

              • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
              • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
                De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
              • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
                Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
              • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
                Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
              • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
                Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

                Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

                • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
                  In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
                • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
                  De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
                • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
                  Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
                • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
                  In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]