Es probable que las personas nuevas en los trabajos de “planificador de demanda” o “planificador de suministro” tengan preguntas sobre los diversos términos y métodos de pronóstico utilizados en sus trabajos. Esta nota puede ayudar a explicar estos términos y mostrar cómo se relacionan.
Planificacion de la Demanda
La planificación de la demanda se refiere a qué cantidad de lo que tiene para vender saldrá por la puerta en el futuro, por ejemplo, cuánto venderá el próximo trimestre. A continuación se presentan seis metodologías que se utilizan a menudo en la planificación de la demanda.
- Pronóstico Estadístico
- Estos métodos utilizan el historial de demanda para pronosticar valores futuros. Los dos métodos más comunes son el ajuste de curvas y el suavizado de datos.
- El ajuste de curvas coincide con una función matemática simple, como la ecuación de una línea recta (y= a +b∙t) o una curva tipo tasa de interés (y=a∙bt), al historial de demanda. Luego extiende esa línea o curva hacia adelante en el tiempo según el pronóstico.
- Por el contrario, el suavizado de datos no da como resultado una ecuación. En lugar de eso, recorre el historial de demanda, promediando valores a lo largo del camino, para crear una versión más fluida del historial. Estos métodos se denominan suavizado exponencial y media móvil. En el caso más simple (es decir, en ausencia de tendencia o estacionalidad, para lo cual existen variantes), el objetivo es estimar el nivel promedio actual de demanda y utilizarlo como pronóstico.
- Estos métodos producen “pronósticos puntuales”, que son estimaciones de un solo número para cada período futuro (por ejemplo, “Las ventas en marzo serán 218 unidades”). A veces vienen con estimaciones de posibles errores de pronóstico combinadas con modelos separados de variabilidad de la demanda (“Las ventas en marzo serán de 218 ± 120 unidades”).
- Predicción Probabilística
- Este enfoque se centra en la aleatoriedad de la demanda y trabaja intensamente para estimar la incertidumbre del pronóstico. Considera que las previsiones son menos un ejercicio de obtención de cifras específicas y más un ejercicio de gestión de riesgos.
- Modela explícitamente la variabilidad de la demanda y la utiliza para presentar resultados en forma de un gran número de escenarios construidos para mostrar la gama completa de posibles secuencias de demanda. Son especialmente útiles en tareas tácticas de planificación de suministros, como establecer puntos de reorden y cantidades de pedidos.
- Pronóstico causal
- Los modelos de pronóstico estadístico utilizan como datos de entrada únicamente el historial de demanda del artículo en cuestión. Consideran que los altibajos en el gráfico de la demanda son el resultado final de innumerables factores no identificados (las tasas de interés, el precio del té en China, las fases de la luna, lo que sea). El pronóstico causal identifica explícitamente una o más influencias (tasas de interés, inversión en publicidad, precios de la competencia,...) que podrían influir de manera plausible en las ventas. Luego construye una ecuación que relaciona los valores numéricos de estos “impulsores” o “factores causales” con las ventas de artículos. Los coeficientes de la ecuación se estiman mediante “análisis de regresión”.
- Pronóstico crítico
- Tripa Dorada. A pesar de la disponibilidad general de grandes cantidades de datos, algunas empresas prestan poca atención a los números y dan mayor peso a los juicios subjetivos de un ejecutivo al que se considera que tiene un "instinto dorado", que le permite utilizar su "instinto" para predecir. cuál será la demanda futura. Si esa persona tiene una gran experiencia, ha dedicado una carrera a analizar los números y no es propensa a hacer ilusiones u otras formas de sesgo cognitivo, el Golden Gut puede ser una forma rápida y económica de planificar. Pero hay buena evidencia de estudios de empresas administradas de esta manera de que confiar en Golden Gut es riesgoso.
- Consenso de grupo. Más común es un proceso que utiliza una reunión periódica para crear un pronóstico de consenso grupal. El grupo tendrá acceso a pronósticos y datos objetivos compartidos, pero los miembros también tendrán conocimiento de factores que pueden no medirse bien o no medirse en absoluto, como el sentimiento del consumidor o las historias transmitidas por los representantes de ventas. Es útil tener un punto de partida objetivo y compartido para estas discusiones que consista en algún tipo de análisis estadístico objetivo. Entonces el grupo puede considerar ajustar el pronóstico estadístico. Este proceso ancla el pronóstico en la realidad objetiva pero explota toda la demás información disponible fuera de la base de datos de pronóstico.
- Generación de escenarios. A veces, varias personas se reúnen y discuten preguntas estratégicas sobre qué pasaría si. "¿Qué pasa si perdemos a nuestros clientes australianos?" "¿Qué pasa si el lanzamiento de nuestro nuevo producto se retrasa seis meses?" “¿Qué pasa si nuestro gerente de ventas para el medio oeste recurre a un competidor?” Estas preguntas más amplias pueden tener implicaciones para los pronósticos de elementos específicos y podrían agregarse a cualquier reunión de pronóstico de consenso del grupo.
- Previsión de nuevos productos.
- Los productos nuevos, por definición, no tienen un historial de ventas que respalde pronósticos estadísticos, probabilísticos o causales. Aquí siempre se pueden utilizar métodos de previsión subjetivos, pero a menudo se basan en una peligrosa proporción entre esperanzas y hechos. Afortunadamente, existe al menos un apoyo parcial para la previsión objetiva en forma de ajuste de curvas.
- Un gráfico de las ventas acumuladas de un artículo a menudo describe una especie de “curva en S”, es decir, un gráfico que comienza en cero, aumenta y luego se nivela hasta alcanzar las ventas totales finales de por vida. La curva recibe su nombre porque parece una letra S de alguna manera manchada y estirada hacia la derecha. Ahora hay un número infinito de curvas S, por lo que los pronosticadores normalmente eligen una ecuación y especifican subjetivamente algunos valores de parámetros clave, como cuándo las ventas alcanzarán 25%, 50% y 75% de ventas totales de por vida y cuál será ese nivel final. Esto también es abiertamente subjetivo, pero produce pronósticos detallados período por período que pueden actualizarse a medida que se acumula experiencia. Finalmente, las curvas en S a veces tienen forma para coincidir con la historia conocida de un producto predecesor similar (“Las ventas de nuestro último artilugio se veían así, así que usémoslo como plantilla”).
Planificación del Suministro
La planificación de la demanda alimenta la planificación de la oferta al predecir las ventas futuras (por ejemplo, de productos terminados) o el uso (por ejemplo, de repuestos). Luego, depende de la planificación del suministro asegurarse de que los artículos en cuestión estén disponibles para su venta o uso.
- Demanda dependiente
- La demanda dependiente es la demanda que puede determinarse por su relación con la demanda de otro artículo. Por ejemplo, una lista de materiales puede mostrar que un pequeño carro rojo consta de una carrocería, una barra de tracción, cuatro ruedas, dos ejes y varios sujetadores para mantener las ruedas en los ejes y conectar la barra de tracción a la carrocería. Entonces, si espera vender 10 vagones rojos, será mejor que fabrique 10, lo que significa que necesita 10×2 = 20 ejes, 10×4 = 40 ruedas, etc. La demanda dependiente rige la compra de materias primas, la compra de componentes y subsistemas. incluso contratación de personal (10 vagones necesitan un chico de secundaria para armarlos en un turno de 1 hora).
- Si tiene varios productos con listas de materiales parcialmente superpuestas, puede elegir entre dos enfoques de previsión. Supongamos que usted vende no sólo carritos rojos sino también carritos de bebé azules y que ambos utilizan los mismos ejes. Para predecir la cantidad de ejes que necesita, puede (1) predecir la demanda dependiente de ejes de cada producto y agregar los pronósticos o (2) observar el historial de demanda total de ejes como su propia serie de tiempo y pronosticarlo por separado. Cuál funciona mejor es una cuestión empírica que puede comprobarse.
- La gestión del inventario
- La gestión de inventario implica muchas tareas diferentes. Estos incluyen establecer parámetros de control de inventario, como puntos de reorden y cantidades de pedidos, reaccionar ante contingencias como desabastecimientos y aceleración de pedidos, establecer niveles de personal y seleccionar proveedores.
- La previsión juega un papel en los tres primeros. El número de pedidos de reabastecimiento que se realizarán en un año para cada producto determina cuántas personas se necesitan para reducir las órdenes de compra. El número y la gravedad de los desabastecimientos en un año determinan el número de contingencias que deben manejarse. El número de órdenes de compra y desabastecimientos en un año será aleatorio pero se regirá por la elección de los parámetros de control de inventario. Las implicaciones de cualquiera de estas elecciones pueden modelarse mediante simulaciones de inventario. Estas simulaciones estarán impulsadas por escenarios de demanda detallados generados por pronósticos probabilísticos.