Smart IP&O funciona con el motor de pronóstico SmartForecasts® que selecciona automáticamente el método más apropiado para cada artículo. Los métodos de Smart Forecast se enumeran a continuación:

  • Promedio móvil simple y suavizado exponencial único para datos planos y ruidosos
  • Promedio móvil lineal y suavizado exponencial doble para datos de tendencias
  • Winters Aditivo y Winters Multiplicativo para datos estacionales y estacionales y de tendencias.

Este blog explica cómo funciona cada modelo utilizando diagramas de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro.

 

Estacionalidad
Si desea forzar (o evitar) que se muestre la estacionalidad en el pronóstico, elija los modelos Winters. Ambos métodos requieren 2 años completos de historial.

Multiplicativo de Winters determinará el tamaño de los picos o valles de los efectos estacionales en función de una diferencia porcentual de un volumen promedio de tendencia. No es una buena opción para artículos de muy bajo volumen debido a la división por cero al determinar ese porcentaje. Observe en la imagen a continuación que se proyecta que la gran caída porcentual en la demanda estacional en el historial continúe durante el horizonte de pronóstico, lo que hace que parezca que no hay demanda estacional a pesar de usar un método estacional.

 

Winter’s multiplicative Forecasting method software

Pronóstico estadístico elaborado con el método multiplicativo de Winter. 

 

Aditivo de Winters determinará el tamaño de los picos o valles de los efectos estacionales con base en una unidad de diferencia del volumen promedio. No es un buen ajuste si hay una tendencia significativa en los datos. Tenga en cuenta en la imagen de abajo que sla estacionalidad ahora se pronostica con base en el cambio unitario promedio en la estacionalidad. Por lo tanto, el pronóstico aún refleja claramente el patrón estacional a pesar de la tendencia a la baja tanto en el nivel como en los picos/valles estacionales.

Winter’s additive Forecasting method software

Pronóstico estadístico producido con el método aditivo de Winter.

 

Tendencia

Si desea forzar (o evitar) que la tendencia hacia arriba o hacia abajo se muestre en el pronóstico, restrinja los métodos elegidos a (o elimine los métodos de) Promedio móvil lineal y Suavizado exponencial doble.

 Suavizado exponencial doble retomará una tendencia a largo plazo. No es una buena opción si hay pocos puntos de datos históricos.

Double exponential smoothing Forecasting method software

Pronóstico estadístico producido con Doble Suavización Exponencial

 

Media móvil lineal recogerá las tendencias a corto plazo. No es una buena opción para datos altamente volátiles.

Linear moving average Forecasting method software

 

Datos no de tendencia y no estacionales
Si desea forzar (o evitar) que se muestre un promedio en el pronóstico, restrinja los métodos elegidos a (o elimine los métodos de) Promedio móvil simple y Suavizado exponencial único.

Suavizado exponencial simple sopesará más los datos más recientes y producirá un pronóstico de línea plana. No es una buena opción para datos de tendencias o estacionales.

Single exponential smoothing Forecasting method software

Pronóstico estadístico utilizando Suavización Exponencial Simple

media móvil simple encontrará un promedio para cada período, a veces pareciendo moverse, y mejor para el promedio a más largo plazo. No es una buena opción para datos de tendencias o estacionales.

Simple moving average Forecasting method software

Pronóstico estadístico utilizando la media móvil simple