Para aprovechar los beneficios de eficiencia de la previsión, necesita las previsiones más precisas: previsiones basadas en los datos históricos más apropiados. La mayoría de las discusiones sobre este tema tienden a centrarse en los méritos de usar la demanda frente al historial de envíos, y comentaré esto más adelante. Pero primero, hablemos sobre el uso de datos netos frente a datos brutos.
Historial neto vs. bruto
Muchos planificadores se inclinan por usar datos de ventas netas para crear sus pronósticos. Los sistemas que rastrean las ventas capturan las transacciones a medida que ocurren y agregan los resultados en totales periódicos semanales o mensuales. En algunos casos, los registros de ventas contabilizan las compras devueltas como ventas negativas y calculan un total neto. Estas cifras netas, que a menudo enmascaran patrones de ventas reales, se introducen en el sistema de previsión. Los datos históricos utilizados en realidad presentan una falsa sensación de lo que quería el cliente y cuándo lo quería. Esto se trasladará al pronóstico, con resultados menos que óptimos.
Suponga que sus datos de ventas se agregan en totales mensuales. Si se utilizan cifras netas mensuales, y las devoluciones se producen en el mismo mes que se compran, no hay problema. La actividad neta del mes refleja la demanda real. Pero, ¿y si el producto se devuelve tres o cuatro meses después de haberlo comprado, como suele ocurrir? Las cifras netas subestiman el interés en el producto para el mes en que se cuenta la devolución y (al parecer) sobrestiman la demanda para el mes de la venta inicial. Reflejar la demanda del producto en el momento equivocado de esta manera interfiere con la capacidad del sistema de pronóstico para identificar adecuadamente el patrón (o la falta del mismo) en los datos.
Dado que completa los pedidos a medida que los recibe, difícilmente se negará a realizar el envío porque cree que podrían devolver el producto en unos pocos meses. Los clientes no soportarían eso. Entonces, por supuesto, desea saber que es probable que ocurra tal demanda. Si van a llegar los pedidos, necesitas stock en tu inventario para satisfacer la demanda, independientemente de las devoluciones posteriores. El uso de cifras netas no es la mejor práctica en estas situaciones.
En la mayoría de los casos, los datos utilizados para preparar pronósticos deben basarse en cifras brutas. Los rendimientos pueden pronosticarse como una variable separada y utilizarse como fuente de suministro entrante. Esto dará como resultado menos pedidos innecesarios de nuevo inventario. En última instancia, este enfoque captura mejor los verdaderos patrones en los datos: el corazón de la previsión.
Datos de envío frente a demanda
Una segunda distinción importante con respecto a los datos históricos puede parecer contraria a la intuición. Casi siempre se alienta a los pronosticadores a usar datos de demanda porque se supone que reflejan mejor lo que el cliente quería y cuándo. Sin embargo, cuando tiene la opción, a veces puede ser más inteligente utilizar los datos de envío.
Un principio rector es considerar la precisión de los datos. En la mayoría de las empresas, los datos de envío reflejan exactamente lo que se envió, mientras que los datos de demanda a menudo están plagados de imprecisiones. Aquí están algunos ejemplos:
Los clientes pueden saber, por ejemplo, que no podrá completar su pedido. En ese caso, es posible que se abstengan de realizar el pedido y esperen hasta que crean que tiene existencias disponibles para satisfacer sus necesidades. Por otro lado, los clientes ansiosos pueden presentar múltiples pedidos electrónicos, preocupados de que alguna falta de comunicación pueda impedir que se procese un pedido vital. Cuando estén seguros de que se ha aceptado un pedido, podrán cancelar los pedidos adicionales. Luego está el caso de un cliente que ha experimentado desabastecimientos contigo en el pasado. Pueden aumentar el tamaño de sus pedidos para maximizar la posibilidad de que se les asigne inventario.
Si tales prácticas plagan su historial de pedidos, puede ser más prudente utilizar los datos de envío. A continuación, puede utilizar la función "ajustar historial" de SmartForecasts para afinar los datos de envío, de modo que refleje mejor la demanda. Sin duda, puede hacer lo mismo con los datos de demanda inexactos, pero a menudo esto requerirá mucho más esfuerzo que simplemente corregir los casos obvios en los que los envíos son bajos un mes y altos al siguiente debido a una situación de falta de existencias.
Antes de tomar una decisión sobre si usar datos de envío o de demanda, es importante comprender cómo se contabilizan los pedidos y las devoluciones en su sistema. Hable con sus representantes de servicio al cliente y pregúnteles cómo darían cuenta de estas situaciones. No confíe en la palabra de su departamento de TI. Ejerza su juicio para obtener los mejores resultados.
Tomar las decisiones de datos correctas contribuirá en gran medida a lograr valiosas eficiencias en la cadena de suministro. Tómese el tiempo para leer Publicación de Michael Gilliland sobre este tema en el blog del Institute of Business Forecasting and Planning, en demand-planning.com.
Gregory Hartunian se desempeña como presidente de Smart Software y como miembro de la junta directiva. Anteriormente ocupó el cargo de Vicepresidente de Ventas.
Artículos Relacionados
Dominar el pronóstico automático para datos de series temporales
En este blog, exploraremos el pronóstico automático para proyecciones de demanda de series temporales. Existen múltiples métodos para predecir la demanda futura de un artículo, y esto se vuelve complejo cuando se trata de miles de artículos, cada uno de los cuales requiere una técnica de pronóstico diferente debido a sus patrones de demanda únicos.
Gestión de inventario basada en pronósticos para una mejor planificación
La gestión de inventario basada en pronósticos, o lógica MRP (planificación de requisitos de materiales), es un método de planificación anticipada que ayuda a las empresas a satisfacer la demanda sin exceso o falta de existencias. Al anticipar la demanda y ajustar los niveles de inventario, mantiene un equilibrio entre satisfacer las necesidades de los clientes y minimizar los costos excesivos de inventario. Este enfoque optimiza las operaciones, reduce el desperdicio y mejora la satisfacción del cliente.
Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión
En este blog, exploramos cómo aprovechar las listas de materiales de Epicor Kinetic Planning con Smart IP&O puede transformar su enfoque de pronóstico en un entorno de fabricación altamente configurable. Descubra cómo Smart, una solución de optimización de inventario y planificación de la demanda basada en IA de vanguardia, puede simplificar las complejidades de predecir la demanda de productos terminados, especialmente cuando se trata de componentes intercambiables. Descubra cómo la planificación de listas de materiales y las técnicas avanzadas de previsión permiten a las empresas anticipar las necesidades de los clientes con mayor precisión, garantizando la eficiencia operativa y manteniéndose a la vanguardia en un mercado competitivo.