Smart Software presenteert op Epicor Insights 2022

Smart Software President en CEO presenteert Epicor Insights 2022-sessies over het creëren van concurrentievoordeel met slimme voorraadplanning en -optimalisatie

 

Belmont, MA, mei 2022 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het zal presenteren op Epicor Insights 2022.

Greg Hartunian, CEO van Smart Software, zal twee sessies presenteren en Epicor Smart Inventory Planning and Optimization toelichten tijdens het Epicor Insights-evenement van dit jaar in Nashville, TN. Greg zal laten zien hoe planningsteams in staat kunnen worden gesteld om de voorraad te verminderen, de serviceniveaus te verbeteren en de operationele efficiëntie te verhogen.

  • De presentatie van de Prophet 21 is gepland op woensdag 25 mei, 11.30 - 12:15 uur (CST) 

Profeet 21 Smart Software presenteert op Epicor Insights 2022

Smart Software Kinetic 21 Session Greg CEO

  • De Kinetic-presentatie is gepland op woensdag 25 mei, 14.30 – 15.20 uur (CST) 

Kinetic Smart Software presenteert op Epicor Insights 2022

 

Als u van plan bent dit jaar deel te nemen, neem dan deel aan een van de onderstaande sessies en leer meer over slimme voorraadplanning en -optimalisatie, aangezien we waardevolle functies in onze oplossingen benadrukken. Epicor Insights 2022 brengt meer dan 2.000 gebruikers van Epicor's branchespecifieke ERP-oplossingen voor de productie-, distributie- en dienstverlenende sector samen. Ga voor meer informatie naar INZICHTEN 2022.

Insights-team aan het werk

Smart Software is een Epicor Platinum Partner en toonaangevende leverancier van oplossingen voor vraagplanning, prognoses, voorraadoptimalisatie en analyse. Ons webplatform, Smart IP&O, maakt gebruik van probabilistische prognosemodellering, machine learning en collaboratieve vraagplanning om de voorraadniveaus te optimaliseren en de nauwkeurigheid van de prognoses te vergroten. Je gebruikt Smart IP&O om nauwkeurige prognoses en optimaal voorraadbeleid te creëren die geautomatiseerde bestellingen in Epicor stimuleren. Het platform omvat bidirectionele integraties met zowel Epicor ERP als Prophet 21.

 

Over Smart Software, Inc.
Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disney, Arizona Public Service en Ameren. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

 


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

Een inleiding op probabilistische prognoses

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Als je op de hoogte blijft van het nieuws over supply chain-analyse, u komt vaker de uitdrukking "probabilistische prognoses" tegen. Als deze zin raadselachtig is, lees dan verder.

U weet waarschijnlijk al wat 'voorspelling' betekent. En je weet waarschijnlijk ook dat er veel verschillende manieren lijken te zijn om het te doen. En je hebt waarschijnlijk scherpe kleine zinnen gehoord als 'elke voorspelling is verkeerd'. Dus je weet dat een soort van wiskundige zou kunnen berekenen dat "de voorspelling is dat u volgende maand 100 eenheden zult verkopen", en dan zou u 110 eenheden kunnen verkopen, in welk geval u een 10%-voorspellingsfout heeft.

Je weet misschien niet dat wat ik zojuist heb beschreven een bepaald soort voorspelling is, een 'puntvoorspelling'. Een puntenvoorspelling wordt zo genoemd omdat deze uit slechts een enkel getal bestaat (dwz één punt op de getallenlijn, als je je de getallenlijn herinnert uit je jeugd).

Punt voorspellingen hebben één deugd: ze zijn eenvoudig. Ze hebben ook een fout: ze geven aanleiding tot snauwende uitspraken als 'elke voorspelling is verkeerd'. Dat wil zeggen, in de meeste realistische gevallen is het onwaarschijnlijk dat de werkelijke waarde exact gelijk zal zijn aan de voorspelling. (Wat niet zo erg is als de voorspelling dichtbij genoeg is.)

Dit brengt ons bij 'probabilistische voorspellingen'. Deze aanpak is een stap verder, want in plaats van een voorspelling met één cijfer (punt) te produceren, levert het een kansverdeling op voor de voorspelling. En in tegenstelling tot traditionele extrapolatieve modellen die puur op historische gegevens vertrouwen, hebben probabilistische voorspellingen de mogelijkheid om toekomstige waarden te simuleren die niet verankerd zijn in het verleden.

"Waarschijnlijkheidsverdeling" is een verbiedende uitdrukking, die wat mysterieuze wiskunde oproept waar je misschien van hebt gehoord maar nooit hebt bestudeerd. Gelukkig hebben de meeste volwassenen genoeg levenservaring om het concept intuïtief te begrijpen. Wanneer afgebroken, is het vrij eenvoudig te begrijpen.

Stel je de simpele handeling voor van het opgooien van twee munten. Je zou dit onschuldig plezier kunnen noemen, maar ik noem het een 'probabilistisch experiment'. Het totale aantal kop dat op de twee munten verschijnt, is nul, één of twee. Het opgooien van twee munten is een 'willekeurig experiment'. Het resulterende aantal koppen is een "willekeurige variabele". Het heeft een "kansverdeling", wat niets meer is dan een tabel van hoe waarschijnlijk het is dat de willekeurige variabele een van zijn mogelijke waarden zal blijken te hebben. De kans om twee kop te krijgen als de munten eerlijk zijn, is ¼, net als de kans op geen kop. De kans op één kop is ½.

Dezelfde benadering kan een interessantere willekeurige variabele beschrijven, zoals de dagelijkse vraag naar een reserveonderdeel. Figuur 2 toont een dergelijke kansverdeling. Het werd berekend door drie jaar dagelijkse vraaggegevens te verzamelen over een bepaald onderdeel dat wordt gebruikt in een wetenschappelijk instrument dat aan ziekenhuizen wordt verkocht.

 

Probabilistische vraagvoorspelling 1

Figuur 1: De kansverdeling van de dagelijkse vraag naar een bepaald reserveonderdeel

 

De verdeling in figuur 1 kan worden gezien als een probabilistische voorspelling van de vraag op één dag. Voor dit specifieke onderdeel zien we dat de voorspelling zeer waarschijnlijk nul zal zijn (97% kans), maar soms voor een handvol eenheden, en eens in de drie jaar twintig eenheden. Hoewel de meest waarschijnlijke voorspelling nul is, zou je er een paar bij de hand willen houden als dit onderdeel van cruciaal belang zou zijn ("... bij gebrek aan een spijker ...")

Laten we deze informatie nu gebruiken om een meer gecompliceerde probabilistische voorspelling te maken. Stel dat je drie eenheden bij de hand hebt. Hoeveel dagen duurt het voordat je er geen hebt? Er zijn veel mogelijke antwoorden, variërend van een enkele dag (als u onmiddellijk een vraag krijgt voor drie of meer) tot een zeer groot aantal (aangezien 97% dagen geen vraag ziet). De analyse van deze vraag is een beetje ingewikkeld vanwege de vele manieren waarop deze situatie zich kan voordoen, maar het uiteindelijke antwoord dat het meest informatief is, is een kansverdeling. Het blijkt dat het aantal dagen totdat er geen eenheden meer in voorraad zijn de verdeling heeft zoals weergegeven in figuur 2.

Probabilistische vraagvoorspelling 2

Figuur 2: Verdeling van het aantal dagen totdat alle drie de units op zijn

 

Het gemiddelde aantal dagen is 74, wat een puntvoorspelling zou zijn, maar er is veel variatie rond het gemiddelde. Vanuit het perspectief van voorraadbeheer valt op dat er een kans van 25% is dat alle units na 32 dagen op zijn. Dus als u besluit om meer te bestellen terwijl er nog maar drie in het schap liggen, zou het goed zijn als de leverancier ze u bezorgt voordat er een maand is verstreken. Als ze dat niet konden, zou je een kans van 75% hebben om de voorraad op te slaan - niet goed voor een cruciaal onderdeel.

De analyse achter figuur 2 omvatte het maken van enkele aannames die handig waren, maar niet nodig als ze niet waar waren. De resultaten kwamen van een methode genaamd "Monte Carlo-simulatie", waarin we beginnen met drie eenheden, een willekeurige vraag kiezen uit de verdeling in figuur 1, deze aftrekken van de huidige voorraad en doorgaan totdat de voorraad op is, waarbij wordt geregistreerd hoeveel dagen gingen voorbij voordat je op was. Herhaling van dit proces 100.000 keer geproduceerd Figuur 2.

Toepassingen van Monte Carlo-simulatie strekken zich uit tot problemen met een nog grotere reikwijdte dan het bovenstaande voorbeeld "wanneer zijn we op". Vooral belangrijk zijn Monte Carlo-voorspellingen van de toekomstige vraag. Hoewel het gebruikelijke voorspellingsresultaat een reeks puntvoorspellingen is (bijvoorbeeld de verwachte vraag per eenheid in de komende twaalf maanden), weten we dat er een aantal manieren zijn waarop de werkelijke vraag zich zou kunnen voordoen. Simulatie zou kunnen worden gebruikt om bijvoorbeeld duizend mogelijke sets van 365 dagelijkse vraagbehoeften te produceren.

Deze reeks vraagscenario's zou het scala aan mogelijke situaties waarmee een voorraadsysteem het hoofd zou moeten bieden, vollediger blootleggen. Dit gebruik van simulatie wordt "stresstesten" genoemd, omdat het een systeem blootstelt aan een reeks gevarieerde maar realistische scenario's, waaronder enkele vervelende. Die scenario's worden vervolgens ingevoerd in wiskundige modellen van het systeem om te zien hoe goed het zal omgaan, zoals weerspiegeld in key performance indicators (KPI's). Hoeveel stockouts zijn er bijvoorbeeld in die duizend gesimuleerde jaren van werking in het slechtste jaar? het gemiddelde jaar? het beste jaar? Wat is in feite de volledige kansverdeling van het aantal stockouts in een jaar, en wat is de verdeling van hun omvang?

Figuren 3 en 4 illustreren probabilistische modellering van een voorraadbeheersysteem dat stockouts omzet in backorders. Het gesimuleerde systeem gebruikt een Min/Max-regelbeleid met Min = 10 eenheden en Max = 20 eenheden.

Figuur 3 toont een gesimuleerd jaar van dagelijkse operaties in vier plots. De eerste grafiek toont een bepaald patroon van willekeurige dagelijkse vraag waarin de gemiddelde vraag gestaag toeneemt van maandag tot vrijdag, maar in het weekend verdwijnt. De tweede grafiek toont het aantal eenheden dat elke dag voorhanden is. Merk op dat er tijdens dit gesimuleerde jaar een tiental keren is dat de voorraad negatief wordt, wat wijst op stockouts. De derde grafiek toont de omvang en timing van aanvullingsorders. De vierde grafiek toont de omvang en timing van backorders. De informatie in deze plots kan worden vertaald in schattingen van voorraadinvesteringen, gemiddelde eenheden voorhanden, houdkosten, bestelkosten en tekortkosten.

Probabilistische vraagvoorspelling 3

Figuur 3: Een gesimuleerd jaar van werking van het voorraadsysteem

 

Figuur 3 toont één van duizend gesimuleerde jaren. Elk jaar zal verschillende dagelijkse eisen hebben, wat resulteert in verschillende waarden van statistieken, zoals beschikbare eenheden en de verschillende componenten van de bedrijfskosten. Figuur 4 geeft de verdeling weer van 1.000 gesimuleerde waarden van vier KPI's. Door 1000 jaar ingebeelde werking te simuleren, wordt het bereik van mogelijke resultaten blootgelegd, zodat planners niet alleen rekening kunnen houden met gemiddelde resultaten, maar ook de best-case en worst-case-waarden kunnen zien.

Probabilistische vraagvoorspelling 4

Figuur 4: Verdelingen van vier KPI's op basis van 1.000 simulaties

 

Monte Carlo-simulatie is een benadering met weinig wiskunde en hoge resultaten voor probabilistische prognoses: zeer praktisch en gemakkelijk uit te leggen. Geavanceerde probabilistische voorspellingsmethoden die door Smart Software worden gebruikt, breiden uit op de standaard Monte Carlo-simulatie en leveren uiterst nauwkeurige schattingen van de vereiste voorraadniveaus op.

 

Laat een reactie achter

gerelateerde berichten

Geen Resultaten Gevonden

De pagina die u zocht kon niet gevonden worden. Probeer uw zoekopdracht te verfijnen of gebruik de bovenstaande navigatie om deze post te vinden.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Electric Power Utility selecteert Smart Software voor voorraadoptimalisatie

      Smart IP&O gaat over 90 dagen live en vermindert de voorraad in de eerste zes maanden met $9 miljoen

      Belmont, Massachusetts, 2021Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag de selectie, aankoop en implementatie aangekondigd van zijn vlaggenschipproduct, Smart IP&O, door een groot Amerikaans elektriciteitsbedrijf. Het platform wordt nu gebruikt om meer dan 250.000 reserveonderdelen te plannen met een waarde van meer dan $500.000.000 in het multi-echelon distributienetwerk van de Utility. Smart IP&O werd in slechts 90 dagen geïmplementeerd en wordt gecrediteerd voor het verminderen van de voorraad met $9 miljoen terwijl het serviceniveau binnen de eerste zes maanden van gebruik werd gehandhaafd. De implementatie van Smart IP&O maakt deel uit van het initiatief Strategic Supply Chain Optimization (SCO) van Utility om twintig jaar oude legacy software te vervangen. Volgende fasen van de Smart Software-implementatie zullen Smart IP&O integreren in hun IBM Maximo Asset Management-systeem. De sleutel tot de selectie en het succes van het project tot nu toe is Smart Software's bewezen staat van dienst met betrekking tot het plannen van intermitterende vraag naar reserve- en serviceonderdelen. Intermitterende of klonterige vraag wordt gekenmerkt door frequente periodes van nul vraag afgewisseld met grote pieken van niet-nul vraag die schijnbaar willekeurig optreden. Het hulpprogramma schat dat meer dan 80% van zijn onderdelen een intermitterende vraag heeft. Smart Software maakt gebruik van probabilistische prognoses die duizenden mogelijke toekomstige uitkomsten van vraag en doorlooptijden creëren. Het bewezen vermogen van de technologie om de vereiste voorraad nauwkeurig te voorspellen om het hoge serviceniveau te bereiken dat het nutsbedrijf vereist en om dit op schaal te doen, waren cruciale onderscheidende factoren. De implementatie vond plaats binnen 90 dagen na de start van het project. In de daaropvolgende zes maanden maakte Smart IP&O het mogelijk om de voorraadparameters voor enkele duizenden artikelen aan te passen, wat resulteerde in voorraadverminderingen van $9.0 miljoen terwijl de beoogde serviceniveaus werden gehandhaafd. Aanzienlijke extra besparingen – en verbetering van de serviceniveaus voor kritieke reserveonderdelen – worden verwacht in het komende jaar wanneer voorraden voor extra faciliteiten in het systeem worden gebracht. "We hebben veel zeer sterke successen behaald door klanten in activa-intensieve industrieën te helpen hun onderdelenvoorraad te optimaliseren", aldus Greg Hartunian, CEO van Smart Software. “Gecombineerd met de ondersteuning van het hulpprogramma van bovenaf, hands-on betrokkenheid van IT en het enthousiasme van gebruikers om een nieuwe aanpak te omarmen, hadden we een geweldig recept voor succes. We kijken ernaar uit om voort te bouwen op ons vroege succes om samen nog meer waarde te leveren.” Over Smart Software, Inc. Smart Software, Inc., opgericht in 1981, is een leider in het leveren van bedrijfsbrede oplossingen voor vraagprognose, planning en voorraadoptimalisatie voor bedrijven. Smart Inventory Planning & Optimization is een multi-tenant webplatform dat vraagplanners de tools geeft om seizoensinvloeden, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en periodiek gevraagde serviceonderdelen en kapitaalgoederen af te handelen. De oplossing biedt voorraadbeheerders nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en is te vinden op: www.smartcorp.com.
       
      SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.
      Neem voor meer informatie contact op met Smart Software,Inc., Four Hill Road, Belmont, MA 02478. Telefoon: 1-800-SMART-99 (800-762-7899); E-mail: info@smartcorp.com  
      Smart Software om nieuwe Gen2-prognosemodellen te bekijken op Microsoft Community Summit 2021

      Belmont, MA, september 2021 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagprognose, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat het zal deelnemen aan de Microsoft Community Summit North America 2021 en een preview zal geven van de binnenkort uit te brengen Gen2-prognose algoritmen.

      Een van de belangrijkste uitdagingen waarmee executives nu worden geconfronteerd, is het toenemende tempo van zakendoen. In het verleden verliepen prognoseprocessen doorgaans op kwartaal- of maandtempo. De Gen2-methoden van Smart maken gebruik van dagelijkse transacties van Microsoft 365 ERP-systemen en vertegenwoordigen een enorme sprong voorwaarts in vergelijking met traditionele methoden voor voorraadplanning en prognoses. Gen2 past probabilistische prognoses en machine learning-methoden toe, waarvoor patent is aangevraagd, en breidt zich uit op Smart's in de praktijk bewezen Gen1-modellering die voor zoveel bedrijven zo'n impact heeft gehad.

      De meeste voorraadplanningsteams vertrouwen op traditionele prognosebenaderingen, vuistregels en verkoopfeedback om het voorraadbeleid en vraagprognoses te bepalen. Kom langs bij stand #1820 om meer te weten te komen over deze benaderingen, waarom ze vaak mislukken en hoe de nieuwe Gen2-probabilistische prognose- en optimalisatiemethoden een groot verschil kunnen maken voor uw bedrijfsresultaten. Of u nu een doorgewinterde Microsoft-gebruiker bent die op zoek is naar nieuwe manieren om uw toeleveringsketen te optimaliseren, of nieuw bent bij Dynamics Applications en wilt begrijpen hoe een planningsplatform kan helpen om omzetstijgingen en voorraadverminderingen te stimuleren, kom gerust langs.

       

      Over Smart Software, Inc.
      Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disney, Arizona Public Service en Ameren. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

      Community Summit 2021 Smart Software Inventory planning


      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

       

       

      Verbeter de prognosenauwkeurigheid door fouten te beheren

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

      In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door fouten te managen. Deze video is de eerste in onze serie over effectieve methoden om de nauwkeurigheid van prognoses te verbeteren. We beginnen met te kijken naar hoe voorspelfouten pijn veroorzaken en de daaruit voortvloeiende kosten. Vervolgens zullen we de drie meest voorkomende fouten uitleggen die we moeten vermijden en die ons kunnen helpen de omzet te verhogen en overtollige voorraad te voorkomen. Tom besluit met een overzicht van de methoden om de nauwkeurigheid van voorspellingen te verbeteren, het belang van het meten van voorspellingsfouten en de technologische mogelijkheden om deze te verbeteren.

       

      Prognosefout kan gevolgen hebben

      Overweeg één item uit vele

      • Product X kost $100 om te maken en levert $50 winst op per eenheid.
      • De verkoop van Product X zal de komende 12 maanden 1.000 per maand blijken te zijn.
      • Overweeg één item uit vele

      Wat zijn de kosten van een prognosefout?

      • Als de voorspelling 10% hoog is, sluit het jaar dan af met $120.000 overtollige voorraad.
      • 100 extra/maand x 12 maanden x $100/eenheid
      • Als de voorspelling 10% laag is, mis dan $60.000 winst.
      • 100 te weinig/maand x 12 maanden x $50/eenheid

       

      Drie fouten om te vermijden

      1. Fout negeren.

      • Onprofessioneel, plichtsverzuim.
      • Wensen zal het niet zo maken.
      • Behandel nauwkeurigheidsbeoordeling als datawetenschap, niet als een verwijt.

      2. Meer fouten tolereren dan nodig is.

      • Statistische prognosemethoden kunnen de nauwkeurigheid op schaal verbeteren.
      • Het verbeteren van gegevensinvoer kan helpen.
      • Het verzamelen en analyseren van prognosefoutstatistieken kan zwakke plekken identificeren.

      3. Tijd en geld verspillen die te ver gaat om fouten te elimineren.

      • Sommige product/marktcombinaties zijn inherent moeilijker te voorspellen. Na een punt, laat ze zijn (maar wees alert op nieuwe gespecialiseerde voorspellingsmethoden).
      • Soms kunnen stappen die bedoeld zijn om fouten te verminderen averechts werken (bijv. aanpassing).
      Laat een reactie achter

      RECENTE BERICHTEN

      Supply Chain Math: neem geen mes mee naar een vuurgevecht

      Supply Chain Math: neem geen mes mee naar een vuurgevecht

      Wiskunde en de toeleveringsketen gaan hand in hand. Naarmate toeleveringsketens groeien, zal de toenemende complexiteit bedrijven ertoe aanzetten om manieren te zoeken om grootschalige besluitvorming te beheren. Wiskunde is een feit van het leven voor iedereen in voorraadbeheer en vraagvoorspelling die hoopt concurrerend te blijven in de moderne wereld. Lees ons artikel voor meer informatie.

      Voorraad beheren te midden van regimeverandering

      Voorraad beheren te midden van regimeverandering

      Als je de uitdrukking "regimeverandering" op het nieuws hoort, denk je meteen aan een beladen geopolitieke gebeurtenis. Statistici gebruiken de uitdrukking anders, op een manier die van groot belang is voor demand planning en voorraadoptimalisatie. Deze blog gaat over “regime change” in statistische zin, dat wil zeggen een grote verandering in het karakter van de vraag naar een voorraadartikel.

      recente berichten

      • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]