Onregelmatige updates van parameters voor voorraadplanning kosten tijd, geld en pijn Service

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Parameters voor voorraadplanning, zoals veiligheidsvoorraadniveaus, bestelpunten, min/max-instellingen, doorlooptijden, bestelhoeveelheden en DDMRP-buffers hebben een directe invloed op de voorraaduitgaven en het vermogen om aan de vraag van de klant te voldoen. Op basis van deze parameterinstellingen doet uw ERP-systeem dagelijks inkoopordersuggesties.

Door ervoor te zorgen dat deze inputs worden begrepen en regelmatig worden geoptimaliseerd, worden verspillende voorraaduitgaven aanzienlijk verminderd en worden de klantenserviceniveaus drastisch verbeterd.

Gezien het belang van het juist hebben van deze planningsparameters, besteden we tijdens ons overleg veel tijd aan de vraag (1) hoe deze parameterwaarden worden berekend en (2) hoe vaak ze worden bijgewerkt. Meestal zijn de methoden voor het berekenen van de parameterwaarden de vuistregel. U kunt hier lezen waarom het gebruik van vuistregelbenaderingen zo problematisch is - Pas op voor eenvoudige vuistregels voor voorraadbeheer.

Deze blog zal zich richten op de frequentie van updates. Wanneer we bedrijven interviewen en hen vragen hoe vaak ze planningsparameters bijwerken, is het antwoord dat we bijna altijd horen "elke dag!" Een vervolgvraag of twee onthult meestal dat dit gewoon niet waar is. Wat 'elke dag' in de praktijk betekent, is dit: elke dag stelt het ERP-systeem tientallen tot honderden inkooporders en/of productieopdrachten voor. De planner, laten we hem Peter noemen, bekijkt deze bestellingen dagelijks en beslist of hij ze vrijgeeft, wijzigt of annuleert. Als de bestelsuggestie niet "goed voelt", beoordeelt Peter de planningsinvoer en past hij de bestelling indien nodig aan. Peter kan bijvoorbeeld het gevoel hebben dat er al voldoende voorraad aanwezig is. Om het probleem op te lossen, verlaagt hij het bestelpunt en annuleert hij de bestelling. Of als hij vindt dat de bestelling al weken geleden had moeten worden geplaatst, kan Peter de bestelling bespoedigen en het bestelpunt en de bestelhoeveelheid verhogen om ervoor te zorgen dat er de volgende keer voldoende voorraad is.

De belangrijkste tekortkomingen van deze benadering zijn dat deze reactief en onvolledig is. Hier is waarom:

reactief

Het beoordeelt alleen het handvol items dat op een bepaalde dag is gemarkeerd voor aanvulling, maar niet op andere. De trigger voor het beoordelen van een item is wanneer de ERP een bestelling voorstelt, en dat gebeurt alleen wanneer het bestelpunt of Min wordt overschreden. Als de Min te hoog is en eerder doorbreekt dan zou moeten, wordt een onnodige bestelling geplaatst, tenzij de planner deze onderschept. Als de Min te laag is, dan is het te laat om de fout te herstellen. Hoe groot de bestelsuggestie ook is, u moet nog steeds wachten op nieuwe bevoorrading en aangezien de bestelling laat werd voorgesteld, is een voorraadtekort tijdens de aanvullingsperiode zeer waarschijnlijk. Waar is de “planning” in zo’n proces? Zoals een klant het verwoordde: "Ons vorige proces was, achteraf bezien, besteed aan het beheren van de outputs en niet de inputs."

 

Incompleet

Afbeeldingen voor voorraad krijgen overtollig en tekort voor alle locaties van een distributiebriefHoe zit het met de duizenden andere artikelen die een Min/Max, veiligheidsvoorraad, bestelpunt of andere parameters hebben die niet opnieuw worden beoordeeld gezien de bijgewerkte vraag- en aanbodgegevens. De planner beoordeelt geen van deze items, wat betekent dat problemen niet van tevoren worden geïdentificeerd. Wat het probleem nog groter maakt, is dat wanneer Peter een wijziging aanbrengt, hij geen tools heeft om de kwaliteit van zijn wijzigingen te beoordelen. Als hij de min/max-instellingen wijzigt, weet hij niet welke specifieke impact dit zal hebben op de voorraadwaarde, bestelkosten, voorraadkosten, voorraadtekorten en serviceniveaus. Hij weet alleen dat een toename van de voorraad de service waarschijnlijk zal verbeteren en de kosten zal verhogen. Hij weet bijvoorbeeld niet of zijn inventaris een punt van bereikt heeft afnemende meeropbrengsten. Wanneer voorraadbeslissingen worden genomen met slechts een zeer globaal begrip van de afwegingen, ontstaan er stroomafwaarts meer problemen. U zou niet willen dat uw timmerman ruwe schattingen van hun afmetingen maakt, maar het is gebruikelijk dat professionals op het gebied van voorraadplanning dit doen met miljoenen dollars aan inventarisuitgaven die op het spel staan.

Hoe vaak werken de meeste bedrijven parameters bij?

Dus hoe vaak maken de meeste bedrijven systeembrede updates van hun planningsparameters, zoals bestelpunten, veiligheidsvoorraden, min/max-instellingen, doorlooptijden en bestelhoeveelheden? Doorgaans vinden massa-updates driemaandelijks, jaarlijks plaats, en in sommige gevallen nooit. De enige keren dat wijzigingen worden aangebracht, is wanneer een bestelling wordt geactiveerd door ERP. Niet bepaald behendig.

De belangrijkste reden om niet vaker in te grijpen is dat het te veel tijd kost. De meeste bedrijven stellen deze belangrijke parameters in met behulp van zeer logge Excel-programma's of ERP-applicaties die simpelweg niet zijn ontworpen om systematische voorraadplanning uit te voeren. Dit is waar software voor voorraadoptimalisatie kan helpen.

Voorraadoptimalisatiesoftware gebruiken en waarschijnlijkheidsvoorspelling door de belangrijkste planningsparameters regelmatig bij te werken, bijvoorbeeld elke week of maand in plaats van driemaandelijks of jaarlijks, kunt u snel reageren op veranderingen in uw bedrijf. U kunt kostenbesparende mogelijkheden benutten, bijvoorbeeld wanneer de vraag afneemt en u kunt bijbestelpunten en/of bestelhoeveelheden verlagen en eventueel openstaande bestellingen annuleren. Of u kunt reageren op problemen, zoals wanneer de vraag toeneemt, uw serviceniveauverplichtingen aan klanten in gevaar komen, of de doorlooptijden van leveranciers toenemen en herberekening van bestelpunten vereisen.

Hoe het goed te doen

De sleutel is het vaststellen van een overeengekomen reeks prestatie- en inventariswaardestatistieken en de software de stand van zaken op de achtergrond laten bewaken en u waarschuwen voor uitzonderlijke situaties. Dit is simpelweg nog een manier om te zeggen dat u, als de systemen eenmaal zijn opgezet, verder wilt gaan met beheer bij uitzondering. U kunt bereiken instellen waarbinnen dingen kunnen floreren zoals ze normaal doen, maar zodra een kritieke parameter zoals "voorraadrisico een vooraf bepaald niveau overschrijdt" of "voorraadwaarde of kosten een vooraf gedefinieerd niveau overschrijden", kan de software een dagelijkse waarschuwing en kan ook een reactie aanbevelen, zoals het verhogen van een bestelpunt. Met dit niveau van geautomatiseerde assistentie wordt het mogelijk om de vinger aan de pols van de inventaris te houden zonder overweldigd te worden door de enorme hoeveelheid gegevens.

U kunt bijvoorbeeld een eerste set inventarisparameters als beleid kiezen, omdat u aan de software kunt zien dat deze voldoet aan uw serviceniveaudoelen binnen uw inventarisbudget. U kunt het systeem serviceniveaudoelen voor u laten voorschrijven en vertrouwd zijn met de instellingen omdat de voorraadwaarde binnen het budget valt. Als de vraag echter minder voorspelbaar wordt dan voorheen, kunt u niet hetzelfde serviceniveau bereiken zonder een toename van de voorraad. Een uitzonderingsrapport identificeert dit en stelt u in staat een weloverwogen beslissing te nemen over wat u moet doen. U kunt besluiten om het beleid aan te passen of hetzelfde te houden. Als je het hetzelfde houdt, weet je nu de extra risico's en verandering in voorraadkosten. Dit kan gecommuniceerd worden naar alle stakeholders zodat er geen verrassingen zijn.

Plan niet reageren

In plaats van constant in reactieve modus te zijn, kun je omgaan met wat echt moet worden afgehandeld en heb je nog wat tijd om vooruit te denken. U kunt bijvoorbeeld 'wat als'-analyses uitvoeren op kwesties als welke doorlooptijden van leveranciers de grootste winst opleveren als ze worden verkort, of serviceniveaudoelstellingen moeten worden aangepast om rekening te houden met verschuivingen in klantkritiek, of soortgelijke beleidskwesties. Het is immers niet zo dat je niet met een volle dagelijkse agenda komt te zitten, het is alleen de vraag of je die agenda naar een meer strategisch niveau kunt tillen. Dus als u al uw "planning"-tijd besteedt aan het beheren van de output van uw ERP in plaats van het constructief beoordelen en optimaliseren van de input, is het tijd om uw voorraadplanningsproces opnieuw te beoordelen.

 

 

Laat een reactie achter

gerelateerde berichten

Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

De kosten van spreadsheetplanning

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      "Kiezen en bereiken van een doelserviceniveau" door medeoprichter van Smart Software, geprofileerd in uitgave van Foresight voorjaar 2018
      Belmont, Massachusetts, 17 mei 2018 – Smart Software, Inc., provider of industry-leading demand forecasting, planning, and inventory optimization solutions, today announced that the Spring 2018 issue of Foresight Magazine features Dr. Thomas Willemain’s article “Choosing and Achieving a Target Service Level.”  Len Tashman, Editor of Foresight states: “Tom Willemain describes the primary considerations for setting service-level targets, explaining how software can serve as a valuable aid in this endeavor and offering a case study to illustrate a relatively simple approach – what he calls “service level wins and losses” – by which a company can evaluate how well it is achieving its service level goals.  The case study also reveals how important it is to utilize appropriate probability models rather than rely on traditional defaults such as the Normal distribution of demands.” To read the entire article and to learn more about Foresight please visit https://foresight.forecasters.org/ Over Smart Software, Inc. Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.
      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478. Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com
      Slimme voorraadplanning en -optimalisatie worden getoond op Epicor Insights

      Belmont, Massachusetts, 14 mei  – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat Epicor Software Epicor Smart IP&O zal presenteren, een gezamenlijke oplossing voor voorraadplanning, prognoses en optimalisatie op de jaarlijkse klantenconferentie van Epicor in Nashville, TN van 21 - 24 mei. Smart Software zal ook aanwezig zijn om de oplossing te profileren in stand # 5 in het Solutions Pavilion.

      De samenwerking tussen Smart Software en Epicor brengt de cloudgebaseerde Smart IP&O (Inventory Planning and Optimization) in de nieuwste versie van de Epicor enterprise resource planning (ERP)-oplossing. Sree Menon, Chief Technology Officer van Smart Software, zegt: “Het is niet langer genoeg om simpelweg de inventaris te beheren. Door strategische planning naadloos te integreren met operationele uitvoering, stelt Smart IP&O Epicor ERP-gebruikers in staat om continu voorraad te voorspellen, te reageren en te plannen, waardoor de kosten worden verlaagd en de service wordt verbeterd.”

      Het Epicor Sales Engineering team demonstreert Epicor Smart IP&O in twee sessies:

      "Introductie van Epicor Smart Demand Planning & Voorraadoptimalisatie"
      Donderdag 24 mei om 8.00 uur
      Tennessee Ballrom B

      "Moderniseer de operaties van uw Cadena de Suministro met de Plataforma Epicor Smart Inventory Planning and Optimization"
      Donderdag 24 mei om 10:20 uur
      Ryman Studio H/I

      Epicor Insights 2018 zal meer dan 3.000 gebruikers van Epicor's branchespecifieke ERP-oplossingen voor de productie-, distributie- en dienstverlenende sector samenbrengen. Klanten die aanwezig zijn, krijgen speciale opleidingstrajecten gericht op hun specifieke producten en oplossingen, plus meer mogelijkheden om te netwerken tussen producten en sectoren. Ga voor meer informatie naar https://www.epicor.com/customers/insights/default.aspx

      Over Smart Software, Inc.
      Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.


      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

      Onthul uw werkelijke voorraadplanning en prognosebeleid door deze 10 vragen te beantwoorden

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      In onze vorige blog stelden we de vraag: Hoe weet je zeker dat je echt een beleid hebt voor voorraadplanning en vraagvoorspelling? We legden uit hoe het gebrek aan begrip van een organisatie over de basisprincipes (hoe een prognose tot stand komt, hoe veiligheidsvoorraadbuffers worden bepaald en hoe/waarom deze waarden worden aangepast) bijdraagt aan slechte prognosenauwkeurigheid, verkeerd toegewezen voorraad en gebrek aan vertrouwen in het geheel Verwerken.

      In deze blog bekijken we 10 specifieke vragen die u kunt stellen om erachter te komen wat er echt speelt in uw bedrijf. We beschrijven de typische antwoorden die worden gegeven wanneer er niet echt een beleid voor prognoses/voorraadplanning bestaat, leggen uit hoe deze antwoorden moeten worden geïnterpreteerd en geven duidelijk advies over wat u eraan kunt doen.

      Begin altijd met een simpele hypothetisch voorbeeld. Als u zich concentreert op een specifiek probleem dat u zojuist hebt ervaren, zal dit ongetwijfeld defensieve antwoorden uitlokken die het volledige verhaal verbergen. Het doel is om de daadwerkelijke benadering te ontdekken die wordt gebruikt om inventaris en prognoses te plannen die in de mentale wiskunde of spreadsheets is ingebakken. Hier is een voorbeeld:

      Stel dat u 100 eenheden bij de hand heeft, de doorlooptijd om aan te vullen 3 maanden is en de gemiddelde maandelijkse vraag 20 eenheden is? Wanneer bestel je meer? Hoeveel zou jij bestellen? Hoe zal uw antwoord veranderen als de verwachte ontvangsten van 10 per maand zouden aankomen? Hoe verandert uw antwoord als het artikel een A-, B- of C-artikel is, de prijs van het artikel hoog of laag is, de doorlooptijd van het artikel lang of kort is? Simpel gezegd, wanneer u een productietaak plant of een nieuwe bestelling plaatst bij een leverancier, waarom deed u dat dan? Wat was de aanleiding voor de beslissing om meer te krijgen? Welke planningsinputs werden overwogen?

      Wanneer u antwoorden op de bovenstaande vraag krijgt, concentreer u dan op het vinden van antwoorden op de volgende vragen:

      1. Wat is de onderliggende aanvullingsbenadering? Dit is meestal een van Min/Max, prognose/veiligheidsvoorraad, bestelpunt/bestelhoeveelheid, periodieke beoordeling/bestelling tot of zelfs een vreemde combinatie

      2. Hoe worden de planningsparameters, zoals vraagprognoses, bestelpunten of Min/Max, daadwerkelijk berekend? Het is niet voldoende om te weten dat u Min/Max gebruikt. U moet precies weten hoe deze waarden worden berekend. Antwoorden als “We gebruiken geschiedenis” of “We gebruiken een gemiddelde” zijn niet specifiek genoeg. U hebt antwoorden nodig die duidelijk aangeven hoe geschiedenis wordt gebruikt. Bijvoorbeeld, “We nemen een gemiddelde van de afgelopen 6 maanden, delen dat door 30 om een daggemiddelde te krijgen en vermenigvuldigen dat met de doorlooptijd in dagen. Voor 'A'-artikelen vermenigvuldigen we vervolgens de gemiddelde doorlooptijd met 2 en voor 'B'-artikelen gebruiken we een vermenigvuldiger van 1,5.” (Hoewel dat geen bijzonder goede technische benadering is, heeft het tenminste een duidelijke logica.)

      Zodra u een goed gedefinieerd beleid heeft, kunt u de zwakke punten identificeren om het te verbeteren. Maar als het gegeven antwoord niet veel verder komt dan “We gebruiken geschiedenis”, dan heb je geen beleid om mee te beginnen. Uit antwoorden blijkt vaak dat verschillende planners geschiedenis op verschillende manieren gebruiken. Sommigen houden alleen rekening met de meest recente vraag, anderen slaan misschien in op basis van het gemiddelde van de perioden met de hoogste vraag, enz. Met andere woorden, het kan zijn dat u in feite meerdere ondoordachte "polissen" heeft.

      3. Worden prognoses gebruikt om de bevoorradingsplanning aan te sturen en, zo ja, hoe? Veel bedrijven zullen zeggen dat ze voorspellen, maar hun prognoses worden op een andere manier berekend en gebruikt. Wordt de prognose gebruikt om te voorspellen welke voorraad er in de toekomst zal zijn, waardoor een order wordt geactiveerd? Of wordt het gebruikt om een bestelpunt af te leiden, maar niet om te voorspellen wanneer ik moet bestellen (dat wil zeggen, ik voorspel dat we er 10 per week zullen verkopen, dus om te helpen voorkomen dat de voorraad op is, zal ik meer bestellen als de voorraad op 15 komt)? Wordt het gebruikt als een leidraad voor de planner om subjectief te helpen bepalen wanneer ze meer moeten bestellen? Wordt het gebruikt om raamcontracten met leveranciers op te stellen? Sommigen gebruiken het om MRP aan te drijven. U moet deze details kennen. Een grondig antwoord op deze vraag zou er als volgt uit kunnen zien: “Mijn voorspelling is 10 per week en mijn doorlooptijd is 3 weken, dus ik maak mijn bestelpunt een veelvoud van die voorspelling, meestal 2 x de doorlooptijdvraag of 60 eenheden voor belangrijke artikelen en ik gebruik een kleiner veelvoud voor minder belangrijke artikelen. (Nogmaals, geen geweldige technische benadering, maar duidelijk.)

      4. Welke techniek wordt eigenlijk gebruikt om de prognose te genereren? Is het een gemiddelde, een trending model zoals dubbele exponentiële afvlakking, een seizoensmodel? Hangt de keuze van de techniekverandering af van het type vraaggegevens of wanneer er nieuwe vraaggegevens beschikbaar zijn? (Reserveonderdelen en artikelen met een hoog volume hebben zeer verschillende vraagpatronen.) Hoe kiest u het prognosemodel? Is dit proces geautomatiseerd? Hoe vaak wordt de modelkeuze heroverwogen? Hoe vaak worden de modelparameters opnieuw berekend? Wat is het proces dat wordt gebruikt om uw aanpak te heroverwegen? Het antwoord documenteert hier hoe de basisprognoses tot stand komen. Eenmaal bepaald, kunt u een analyse uitvoeren om te bepalen of andere prognosemethoden zouden verbeteren nauwkeurigheid van de voorspelling. Als u de nauwkeurigheid van de prognoses niet documenteert en geen analyse van de toegevoegde waarde van de prognose uitvoert, bent u niet in staat om goed te beoordelen of de geproduceerde prognoses de beste zijn die ze kunnen zijn. U loopt kansen mis om het proces te verbeteren, de nauwkeurigheid van prognoses te vergroten en het bedrijf te informeren over welk type prognosefout normaal is en moet worden verwacht.

      5. Hoe gebruik je veiligheidsvoorraad? Merk op dat de vraag niet was: "Gebruikt u veiligheidsvoorraad?" In deze context, en om het simpel te houden, betekent de term "veiligheidsvoorraad" voorraad die wordt gebruikt om voorraad te bufferen tegen variabiliteit van vraag en aanbod. Alle bedrijven gebruiken op de een of andere manier buffermethoden. Er zijn echter enkele uitzonderingen. Misschien bent u een werkplaatsfabrikant die alle onderdelen op bestelling aanschaft en vinden uw klanten het helemaal prima om weken of maanden op u te wachten om materiaal te vinden, te produceren, QA te leveren en te verzenden. Of misschien bent u een grote fabrikant met tonnen koopkracht, zodat uw leveranciers lokale magazijnen opzetten die volledig gevuld zijn en klaar om u vrijwel onmiddellijk van voorraad te voorzien. Als deze beschrijvingen uw bedrijf niet beschrijven, heeft u zeker een soort buffer om u te beschermen tegen variabiliteit in vraag en aanbod. U gebruikt het veld "veiligheidsvoorraad" misschien niet in uw ERP, maar u bent zeker aan het bufferen.

      Er kunnen antwoorden worden gegeven zoals "We gebruiken geen veiligheidsvoorraad omdat we prognoses maken." Helaas, een goede voorspelling zal een 50/50 kans hebben om boven/onder de daadwerkelijke vraag te zijn. Dit betekent dat u 50% van de tijd een voorraad krijgt zonder dat er een veiligheidsvoorraadbuffer aan de prognose is toegevoegd. Voorspellingen zijn alleen perfect als er geen willekeur is. Aangezien er altijd willekeur is, moet u bufferen als u geen bodemloze serviceniveaus wilt hebben.

      Als het antwoord niet wordt onthuld, kunt u wat meer onderzoeken hoe de verschillende aanvullingshendels worden gebruikt om mogelijke buffers toe te voegen, wat leidt tot vragen 6 en 7.

      6. Verlengt u wel eens de doorlooptijd of bestelt u wel eens eerder dan nodig is?
      In ons hypothetische voorbeeld heeft uw leverancier doorgaans 4 weken nodig om te leveren en is redelijk consistent. Maar om u te beschermen tegen stockouts, bestelt uw koper routinematig 6 weken uit in plaats van 4 weken. Het veiligheidsvoorraadveld in uw ERP-systeem staat misschien op nul omdat "we geen veiligheidsvoorraad gebruiken", maar in werkelijkheid heeft de bestelbenadering van de koper zojuist 2 weken buffervoorraad toegevoegd.

      7. Vult u de vraagprognose in?
      In ons voorbeeld verwacht de planner 10 eenheden per maand te verbruiken, maar "voor het geval dat" een prognose van 20 per maand invoert. Het veiligheidsvoorraadveld in het MRP-systeem is blanco gelaten, maar de nu vermomde buffervoorraad is de vraagprognose binnengesmokkeld. Dit is een fout die 'voorspellingsbias' introduceert. Niet alleen zullen uw prognoses minder nauwkeurig zijn, maar als er geen rekening wordt gehouden met de vertekening en de veiligheidsvoorraad wordt toegevoegd door andere afdelingen, zult u te veel bevoorraden.

      Het ad-hockarakter van de bovenstaande benaderingen verergert de problemen door geen rekening te houden met de daadwerkelijke vraag of het aanbod variabiliteit van het artikel. De planner kan bijvoorbeeld gewoon een vuistregel maken die de doorlooptijdprognose voor belangrijke artikelen verdubbelt. Eén maat past niet allemaal als het gaat om voorraadbeheer. Deze benadering zal de voorspelbare artikelen substantieel overbevoorraden, terwijl de periodiek gevraagde artikelen substantieel onderbezet zijn. Jij kunt lezen "Pas op voor eenvoudige vuistregels voor voorraadbeheer” om meer te weten te komen over waarom dit soort aanpak zo kostbaar is.

      De ad-hoc aard van de benaderingen negeert ook wat er gebeurt als het bedrijf wordt geconfronteerd met een enorme overstock of stock out. Bij het proberen te begrijpen wat er is gebeurd, zal het vermelde beleid worden onderzocht. In het geval van een overstock zal het systeem een veiligheidsvoorraad nul tonen. De bedrijfsleiders zullen aannemen dat ze geen veiligheidsvoorraad bij zich hebben, hun hoofd krabben en uiteindelijk de voorspelling de schuld geven, verklaren "Ons bedrijf kan niet worden voorspeld" en strompelen verder. Ze kunnen de leverancier zelfs de schuld geven voor het te vroeg verzenden en ervoor zorgen dat ze meer vasthouden dan nodig is. In het geval dat de voorraad op is, denken ze dat ze niet genoeg op voorraad hebben en voegen ze willekeurig meer voorraad toe aan veel items, zonder zich te realiseren dat er in feite veel extra veiligheidsvoorraad in het proces is ingebakken. Dit maakt het waarschijnlijker dat voorraden in de toekomst moeten worden afgeschreven.

      8. Wat is de exacte inventaristerminologie die wordt gebruikt? Definieer wat u bedoelt met veiligheidsvoorraad, Min, bestelpunt, EOQ, enz. Hoewel er standaard technische definities het is mogelijk dat er iets anders is, en miscommunicatie zal hier problematisch zijn. Sommige bedrijven verwijzen bijvoorbeeld naar Min als de hoeveelheid voorraad die nodig is om aan de doorlooptijdvraag te voldoen, terwijl sommigen Min definiëren als inclusief zowel doorlooptijdvraag als veiligheidsvoorraad om te bufferen tegen vraagvariabiliteit. Anderen kunnen de minimale bestelhoeveelheid betekenen.

      9. Is de aanwezige voorraad in overeenstemming met het beleid? Wanneer uw detectivewerk is voltooid en alles is gedocumenteerd, opent u uw spreadsheet of ERP-systeem en bekijkt u de beschikbare hoeveelheid. Het zou min of meer in overeenstemming moeten zijn met uw planningsparameters (dwz als Min/Max 20/40 is en de typische doorlooptijdvraag 10 is, dan zou u op elk moment ongeveer 10 tot 40 eenheden bij de hand moeten hebben. Verrassend genoeg, voor veel bedrijven is er vaak een enorme inconsistentie. We hebben situaties waargenomen waarin de min/max-instelling 20/40 is, maar de voorhanden voorraad 300+ is. Dit geeft aan dat het beleid dat is voorgeschreven gewoon niet wordt gevolgd. Dat is een groter probleem.

      10. Wat ga je nu doen?

      Vraagprognoses en voorraadopslagbeleid moeten goed gedefinieerde processen zijn die door alle betrokkenen worden begrepen en geaccepteerd.  Er zou nul mysterie moeten zijn.

      Om dit goed te doen, moeten de vraag- en aanbodvariabiliteit worden geanalyseerd en gebruikt om de juiste niveaus van veiligheidsvoorraad te berekenen. Buffers toevoegen zonder een impliciet begrip van wat elke extra eenheid buffervoorraad u oplevert in termen van service, is als willekeurig een handvol ingrediënten in een cakerecept gooien. Een kleine verandering in ingrediënten kan een enorme impact hebben op wat er uit de oven komt: de ene hap is te zoet, de volgende te zuur. Zo is het ook met voorraadbeheer. Een beetje extra hier, een beetje minder daar, en al snel zit je met kostbare overtollige voorraad in sommige gebieden, pijnlijke tekorten in andere, geen idee hoe je daar bent gekomen, en met weinig begeleiding om dingen beter te maken.

      Modern Inventory optimization en software voor vraagplanning met zijn geavanceerde analyses en sterke basis in prognoseanalyse kan veel helpen bij dit probleem. Maar zelfs de beste software helpt niet als deze inconsistent wordt gebruikt.

      Laat een reactie achter

      gerelateerde berichten

      Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

      Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

      Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

      De kosten van spreadsheetplanning

      De kosten van spreadsheetplanning

      Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

      Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

      Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

      In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

      recente berichten

      • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

          Veiligheidsvoorraad inschatten

          De slimme voorspeller

          Het nastreven van best practices op het gebied van vraagplanning,

          prognoses en voorraadoptimalisatie

          In mijn vorige post in deze serie over essentiële concepten, “Wat is 'Een goede voorspelling'”besprak ik de basisinspanning om de meest waarschijnlijke toekomst te ontdekken in een scenario voor vraagplanning. Ik definieerde een goede voorspelling als een die onbevooroordeeld en zo nauwkeurig mogelijk is. Maar ik waarschuwde ook dat, afhankelijk van de stabiliteit of volatiliteit van de gegevens waarmee we moeten werken, er nog steeds enige onnauwkeurigheid kan zijn in zelfs een goede voorspelling. De sleutel is om inzicht te hebben in hoeveel.

          Dit onderwerp, omgaan met onzekerheid, is het onderwerp van een bericht van mijn collega Tom Willemain, “Het gemiddelde is niet het antwoord”. Zijn post legt de theorie uiteen om op verantwoorde wijze de grenzen van ons voorspellende vermogen te confronteren. Het is belangrijk om te begrijpen hoe dit echt werkt.

          Zoals ik aan het einde van mijn vorige bericht kort aanstipte, begint onze aanpak met iets dat een "glijdende simulatie" wordt genoemd. We schatten hoe nauwkeurig we de toekomst voorspellen door onze voorspellingstechnieken te gebruiken op een ouder deel van de geschiedenis, waarbij we de meest recente gegevens uitsluiten. We kunnen dan wat we zouden hebben voorspeld voor het recente verleden vergelijken met onze werkelijke informatie over wat er is gebeurd. Dit is een betrouwbare methode om in te schatten hoe nauwkeurig we de toekomstige vraag voorspellen.

          Veiligheidsvoorraad, een zorgvuldig gemeten buffer in voorraadniveau die we in voorraad hebben boven onze voorspelling van de meest waarschijnlijke vraag, is afgeleid van de schatting van de voorspellingsfout die voortkomt uit de "glijdende simulatie". Deze aanpak om met de nauwkeurigheid van onze prognoses om te gaan, balanceert efficiënt tussen het negeren van de dreiging van onvoorspelbare en kostbare overcompensatie.

          In meer technische details: de prognosefouten die worden geschat door dit glijdende simulatieproces geven het niveau van onzekerheid aan. We gebruiken deze fouten om de standaarddeviatie van de prognoses te schatten. Nu, met een regelmatige vraag, kunnen we aannemen dat de voorspellingen (die schattingen zijn van toekomstig gedrag) het beste worden weergegeven door een klokvormige kansverdeling - wat statistici de "normale verdeling" noemen. Het centrum van die verdeling is onze puntvoorspelling. De breedte van die verdeling is de standaarddeviatie van de "glijdende simulatie"-voorspelling van de bekende werkelijke waarden - we halen dit rechtstreeks uit onze schattingen van de voorspellingsfout.

          Zodra we de specifieke klokvormige curve kennen die bij de voorspelling hoort, kunnen we eenvoudig de benodigde veiligheidsvoorraadbuffer inschatten. De enige input van ons is het “serviceniveau” dat gewenst is en de veiligheidsvoorraad op dat serviceniveau kan worden bepaald. (Het serviceniveau is in wezen een maatstaf van hoe zeker we moeten zijn van onze voorraadniveaus, waarbij een groeiend vertrouwen corresponderende uitgaven voor extra voorraad vereist.) Let op, we gaan ervan uit dat de juiste verdeling die moet worden gebruikt de normale verdeling is. Dit is correct voor de meeste vraagreeksen waar u een regelmatige vraag per periode heeft. Het mislukt wanneer de vraag sporadisch of met tussenpozen is.

          In het volgende stuk in deze serie zal ik bespreken hoe Smart Forecasts omgaat met het schatten van de veiligheidsvoorraad in die gevallen van intermitterende vraag, wanneer de veronderstelling van normaliteit onjuist is.

          Nelson Hartunian, PhD, was medeoprichter van Smart Software, was voorheen President en houdt er momenteel toezicht op als voorzitter van de raad van bestuur. Hij heeft op verschillende momenten leiding gegeven aan softwareontwikkeling, verkoop en klantenservice.

          Laat een reactie achter

          gerelateerde berichten

          Het prognoseproces voor besluitvormers

          Het prognoseproces voor besluitvormers

          In bijna elk bedrijf en elke branche hebben besluitvormers betrouwbare voorspellingen nodig van cruciale variabelen, zoals omzet, inkomsten, vraag naar producten, voorraadniveaus, marktaandeel, kosten en trends in de sector. Er zijn veel soorten mensen die deze voorspellingen maken. Sommigen zijn geavanceerde technische analisten, zoals bedrijfseconomen en statistici. Vele anderen beschouwen forecasting als een belangrijk onderdeel van hun totale werk: algemeen managers, productieplanners, voorraadbeheerspecialisten, financiële analisten, strategische planners, marktonderzoekers en product- en verkoopmanagers. Toch beschouwen anderen zichzelf zelden als voorspellers, maar moeten ze vaak voorspellingen doen op een intuïtieve, oordelende basis.

          Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

          Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

          In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten zal enorm stijgen als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk afzonderlijk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende ERP-oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in ERP, en hoe u hiervan kunt profiteren met Smart Inventory Planning en Optimization (Smart IP&O) om in het licht van deze complexiteit uw vraag voor te blijven.

          De voorspelling is belangrijk, maar misschien niet zoals u denkt

          De voorspelling is belangrijk, maar misschien niet zoals u denkt

          Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja.

          recente berichten

          • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
            In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
          • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
            De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
          • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
            Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
          • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
            Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
          • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
            Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

            Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

            • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
              In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
            • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
              De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
            • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
              Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
            • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
              In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]