Er zijn onvermijdelijke afwegingen tussen voorraadkosten en artikelbeschikbaarheid. De app Smart Inventory Optimization (SIO) berekent alle belangrijke statistieken om die afwegingen bloot te leggen. U kunt "wat als"-experimenten proberen, zoals "Wat gebeurt er met tekortkosten als we het bestelpunt verhogen van 5 naar 10?". Beter nog, u kunt SIO het optimale bedrijfsbeleid laten vinden, bijvoorbeeld de laagste kostencombinatie van bestelpunt en bestelhoeveelheid die een 95%-serviceniveau garandeert.
gerelateerde berichten

Verward over AI en Machine Learning?
Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

Hoe u voorraadvereisten kunt voorspellen
Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag. Traditionele methoden zijn vaak gebaseerd op klokvormige vraagcurves, maar dit is niet altijd accuraat. In dit artikel duiken we in de complexiteit van deze praktijk, vooral als het gaat om de intermitterende vraag.