1-800-SMART-99
Selecteer een pagina
Correlation vs Causation: Is This Relevant to Your Job?

Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct.

Extrapolative vs Causal Models

Most demand forecasting uses extrapolative models. Also called time-series models, these forecast demand using only the past values of an item’s demand. Plots of past values reveal trend and seasonality and volatility, so there is a lot they are good for. But there is another type of model – causal models —that can potentially improve forecast accuracy beyond what you can get from extrapolative models.

Causal models bring more input data to the forecasting task: information on presumed forecast “drivers” external to the demand history of an item. Examples of potentially useful causal factors include macroeconomic variables like the inflation rate, the rate of GDP growth, and raw material prices. Examples not tied to the national economy include industry-specific growth rates and your own and competitors’ ad spending.  These variables are usually used as inputs to regression models, which are equations with demand as an output and causal variables as inputs.

Forecasting using Causal Models

Many firms have an S&OP process that involves a monthly review of statistical (extrapolative) forecasts in which management adjusts forecasts based on their judgement. Often this is an indirect and subjective way to work causal models into the process without doing the regression modeling.

To actually make a causal regression model, first you have to nominate a list of potentially-useful causal predictor variables. These may come from your subject matter expertise. For example, suppose you manufacture window glass. Much of your glass may end up in new homes and new office buildings. So, the number of new homes and offices being built are plausible predictor variables in a regression equation.

There is a complication here: if you are using the equation to predict something, you must first predict the predictors. For example, sales of glass next quarter may be strongly related to numbers of new homes and new office buildings next quarter. But how many new homes will there be next quarter? That’s its own forecasting problem. So, you have a potentially powerful forecasting model, but you have extra work to do to make it usable.

There is one way to simplify things: if the predictor variables are “lagged” versions of themselves. For example, the number of new building permits issued six months ago may be a good predictor of glass sales next month. You don’t have to predict the building permit data – you just have to look it up.

Is it a causal relationship or just a spurious correlation?

Causal models are the real deal: there is an actual mechanism that relates the predictor variable to the predicted variable. The example of predicting glass sales from building permits is an example.

A correlation relationship is more iffy. There is a statistical association that may or may not provide a solid basis for forecasting. For example, suppose you sell a product that happens to appeal most strongly to Dutch people but you don’t realize this. The Dutch are, on average, the tallest people in Europe. If your sales are increasing and the average height of Europeans is increasing, you might use that relationship to good effect. However, if the proportion of Dutch in the Euro zone is decreasing while the average height is increasing because the mix of men versus women is shifting toward men, what can go wrong? You will expect sales to increase because average height is increasing. But your sales are really mostly to the Dutch, and their relative share of the population is shrinking, so your sales are really going to decrease instead. In this case the association between sales and customer height is a spurious correlation.

How can you tell the difference between true and spurious relationships? The gold standard is to do a rigorous scientific experiment. But you are not likely to be in position to do that. Instead, you have to rely on your personal “mental model” of how your market works. If your hunches are right, then your potential causal models will correlate with demand and causal modeling will pay off for you, either to supplement extrapolative models or to replace them.

Soorten prognoseproblemen die we helpen oplossen

Hier zijn voorbeelden van prognoseproblemen die SmartForecasts kan oplossen, samen met de soorten bedrijfsgegevens die representatief zijn voor elk.

Een item voorspellen op basis van het patroon

Welke omzet kunt u, gegeven de volgende zes kwartaalverkoopcijfers, verwachten voor het derde en vierde kwartaal van 2023?

Verkoop per kwartaal

SmartForecasts biedt u vele manieren om dit probleem aan te pakken. U kunt uw eigen statistische prognoses maken met een van de zes verschillende Exponential smoothing en Moving average methoden. Of, zoals de meeste niet-technische voorspellers, kunt u de tijdbesparende automatische opdracht gebruiken, die is geprogrammeerd om automatisch de meest nauwkeurige methode voor uw gegevens te selecteren en te gebruiken. Ten slotte kunt u, om uw zakelijke oordeel in het prognoseproces op te nemen, elk statistisch prognoseresultaat grafisch aanpassen met behulp van SmartForecasts' "oogbol" aanpassing mogelijkheden.

Een item voorspellen op basis van zijn relatie met andere variabelen.

Gezien de volgende historische relatie tussen de verkoop per eenheid en het aantal vertegenwoordigers, welke verkoopniveaus kunt u verwachten wanneer de geplande toename van het verkooppersoneel plaatsvindt in de laatste twee kwartalen van 2023?

Verkoop en verkoopvertegenwoordigers per kwartaal

U kunt een vraag als deze beantwoorden met behulp van het krachtige SmartForecasts Regressie commando, speciaal ontworpen om prognosetoepassingen te vergemakkelijken die oplossingen voor regressieanalyse vereisen. Regressiemodellen met een vrijwel onbeperkt aantal onafhankelijke/voorspellersvariabelen zijn mogelijk, hoewel de meeste bruikbare regressiemodellen slechts een handvol voorspellers gebruiken.

Gelijktijdig een aantal productitems en hun totaal voorspellen

Gegeven de volgende totale verkoop voor alle overhemden en de verdeling van de verkoop per kleur, wat zal de individuele en totale verkoop zijn in de komende zes maanden?

Maandelijkse verkoop van overhemden per kleur

De unieke Group Forecasting-functies van SmartForecasts voorspellen automatisch en gelijktijdig nauw verwante tijdreeksen, zoals deze artikelen in dezelfde productgroep. Dit bespaart veel tijd en levert prognoseresultaten op, niet alleen voor de afzonderlijke artikelen, maar ook voor het totaal. "Eyeball"-aanpassingen op zowel item- als groepsniveau zijn eenvoudig te maken. U kunt snel prognoses maken voor productgroepen met honderden of zelfs duizenden artikelen.

Automatisch duizenden items voorspellen

Wat kunt u verwachten van de vraag in de komende zes maanden voor elk van de 5.000 SKU's, gegeven het volgende record van productvraag op SKU-niveau?

Maandelijkse productvraag per SKU (Stock Keeping Unit)

In slechts een paar minuten kan de krachtige automatische selectie van SmartForecasts een prognosetaak van deze omvang uitvoeren, de gegevens over de productvraag lezen, automatisch statistische prognoses voor elke SKU maken en het resultaat opslaan. De resultaten zijn vervolgens klaar voor export naar uw ERP-systeem met behulp van een van onze API-gebaseerde connectoren of via bestandsexport. Eenmaal ingesteld, worden er automatisch elke planningscyclus prognoses gemaakt zonder tussenkomst van de gebruiker.

Voorspelling van de vraag die meestal nul is

Een apart en vooral uitdagend type data om te voorspellen is periodieke vraag, die meestal nul is, maar op willekeurige tijdstippen omhoog springt naar willekeurige waarden die niet gelijk zijn aan nul. Dit patroon is typerend voor de vraag naar langzaam in beweging items, zoals service-onderdelen of groot ticket kapitaalgoederen.

Kijk bijvoorbeeld eens naar het volgende voorbeeld van de vraag naar serviceonderdelen voor vliegtuigen. Let op het overwicht van nulwaarden met niet-nulwaarden vermengd, vaak in bursts.

SmartForecasts heeft een unieke methode die speciaal is ontworpen voor dit soort data: de functie Intermittent Demand forecasting. Aangezien intermitterende vraag het vaakst ontstaat in de context van voorraadbeheer, richt deze functie zich op het voorspellen van het bereik van waarschijnlijke waarden voor de totale vraag gedurende een doorlooptijd, bijvoorbeeld de cumulatieve vraag over de periode van 23 juni tot 23 augustus in het bovenstaande voorbeeld .

Het voorspellen van voorraadvereisten is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige waarden.

Overweeg voor de eenvoud het probleem van het voorspellen van voorraadbehoeften voor slechts één periode vooruit, bijvoorbeeld één dag vooruit. Gewoonlijk is de prognosetaak het schatten van het meest waarschijnlijke of gemiddelde niveau van de productvraag. Als de beschikbare voorraad echter gelijk is aan de gemiddelde vraag, is er een kans van ongeveer 50% dat de vraag de voorraad overtreft, wat resulteert in omzetverlies en/of goodwill. Het voorraadniveau instellen op bijvoorbeeld tien keer de gemiddelde vraag zal waarschijnlijk het probleem van stockouts elimineren, maar zal net zo zeker resulteren in opgeblazen voorraadkosten.

De truc van voorraadoptimalisatie is om een bevredigende balans te vinden tussen voldoende voorraad hebben om aan de meeste vraag te voldoen zonder al te veel middelen in het proces vast te leggen. Meestal is de oplossing een combinatie van zakelijk inzicht en statistieken. Het beoordelende deel is het definiëren van een acceptabel voorraadserviceniveau, zoals het direct uit voorraad voldoen aan 95% vraag. Het statistische deel is om het 95e percentiel van de vraag te schatten.

Wanneer niet omgaan met Intermittent demand, schat SmartForecasts het vereiste voorraadniveau door uit te gaan van een klokvormige (normale) vraagcurve, zowel het midden als de breedte van de klokcurve te schatten en vervolgens een standaard statistische formule te gebruiken om het gewenste percentiel te schatten. Het verschil tussen het gewenste voorraadniveau en het gemiddelde niveau van de vraag wordt de veiligheidsvoorraad genoemd omdat het beschermt tegen de mogelijkheid van stockouts.

Bij intermitterende vraag is de klokvormige curve een slechte benadering van de statistische verdeling van de vraag. In dit speciale geval gebruikt SmartForecasts gepatenteerde intermitterende vraagvoorspellingstechnologie om het vereiste voorraadserviceniveau te schatten.

Drie manieren om de nauwkeurigheid van prognoses te schatten

Nauwkeurigheid van prognoses is een belangrijke maatstaf om de kwaliteit van uw vraagplanningsproces te beoordelen. (Het is niet de enige. Anderen omvatten tijdigheid en kosten; zie 5 Tips voor vraagplanning voor het berekenen van prognoseonzekerheid.) Zodra u prognoses heeft, zijn er een aantal manieren om hun nauwkeurigheid samen te vatten, meestal aangeduid met obscure drie- of vierletterige acroniemen zoals MAPE, RMSE en MAE. Zien Vier handige manieren om prognosefouten te meten voor meer informatie.

Een minder besproken maar meer fundamentele kwestie is hoe computationele experimenten worden georganiseerd voor het berekenen van voorspellingsfouten. Deze post vergelijkt de drie belangrijkste experimentele ontwerpen. Een van hen is ouderwets en komt in wezen neer op valsspelen. Een andere is de gouden standaard. Een derde is een handig hulpmiddel dat de gouden standaard nabootst en kan het beste worden gezien als een voorspelling van hoe de gouden standaard zal uitpakken. Figuur 1 is een schematische weergave van de drie methoden.

Afbeelding 1: Drie manieren om prognosefouten te beoordelen

Het bovenste paneel van figuur 1 geeft de manier weer waarop voorspellingsfouten werden beoordeeld in het begin van de jaren '80 voordat we de stand van de techniek verplaatsten naar het schema in het middelste paneel. Vroeger werden prognoses beoordeeld op dezelfde gegevens die werden gebruikt om de prognoses te berekenen. Nadat een model aan de gegevens was aangepast, waren de berekende fouten niet voor modelvoorspellingen maar voor model past bij. Het verschil is dat prognoses voor toekomstige waarden zijn, terwijl aanpassingen voor gelijktijdige waarden zijn. Stel dat het voorspellingsmodel een eenvoudig voortschrijdend gemiddelde is van de drie meest recente waarnemingen. Op tijdstip 3 berekent het model het gemiddelde van waarnemingen 1, 2 en 3. Dit gemiddelde wordt dan vergeleken met de waargenomen waarde op tijdstip 3. We noemen dit vals spelen omdat de waargenomen waarde op tijdstip 3 een stem kreeg over wat de voorspelling zou moeten zijn op tijdstip 3. Een echte prognosebeoordeling zou het gemiddelde van de eerste drie waarnemingen vergelijken met de waarde van de volgende, vierde, observatie. Anders blijft de voorspeller achter met een te optimistische beoordeling van de nauwkeurigheid van de voorspelling.

Het onderste paneel van figuur 1 toont de beste manier om de nauwkeurigheid van prognoses te beoordelen. In dit schema worden alle historische vraaggegevens gebruikt om in een model te passen, dat vervolgens wordt gebruikt om toekomstige, onbekende vraagwaarden te voorspellen. Uiteindelijk ontvouwt de toekomst zich, onthullen de werkelijke toekomstige waarden zich en kunnen werkelijke voorspellingsfouten worden berekend. Dit is de gouden standaard. Deze informatie wordt ingevuld in het rapport 'Prognoses versus actuals' in onze software.

Het middelste paneel toont een handige tussenmaat. Het probleem met de gouden standaard is dat u moet wachten om erachter te komen hoe goed de door u gekozen prognosemethoden presteren. Deze vertraging helpt niet wanneer u op dit moment moet kiezen welke prognosemethode u voor elk item wilt gebruiken. Het geeft ook geen tijdige inschatting van de prognoseonzekerheid die u zult ervaren, wat belangrijk is voor risicobeheer zoals het afdekken van prognoses. De middenweg is gebaseerd op hold-out-analyse, die de meest recente waarnemingen uitsluit (“holds out”) en de voorspellingsmethode vraagt zijn werk te doen zonder die grondwaarheden te kennen. Vervolgens kunnen de prognoses op basis van de verkorte vraaggeschiedenis worden vergeleken met de uitgestelde werkelijke waarden om een eerlijke beoordeling van de prognosefout te krijgen.

Verbeter de prognosenauwkeurigheid door fouten te beheren

# Het nastreven van best practices op het gebied van vraagplanning,

### Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door fouten te managen. Deze video is de eerste in onze serie over effectieve methoden om de nauwkeurigheid van prognoses te verbeteren. We beginnen met te kijken naar hoe voorspelfouten pijn veroorzaken en de daaruit voortvloeiende kosten. Vervolgens zullen we de drie meest voorkomende fouten uitleggen die we moeten vermijden en die ons kunnen helpen de omzet te verhogen en overtollige voorraad te voorkomen. Tom besluit met een overzicht van de methoden om de nauwkeurigheid van voorspellingen te verbeteren, het belang van het meten van voorspellingsfouten en de technologische mogelijkheden om deze te verbeteren.

### Prognosefout kan gevolgen hebben

Overweeg één item uit vele

• Product X kost \$100 om te maken en levert \$50 winst op per eenheid.
• De verkoop van Product X zal de komende 12 maanden 1.000 per maand blijken te zijn.
• Overweeg één item uit vele

Wat zijn de kosten van een prognosefout?

• Als de voorspelling 10% hoog is, sluit het jaar dan af met \$120.000 overtollige voorraad.
• 100 extra/maand x 12 maanden x \$100/eenheid
• Als de voorspelling 10% laag is, mis dan \$60.000 winst.
• 100 te weinig/maand x 12 maanden x \$50/eenheid

### Drie fouten om te vermijden

1. Fout negeren.

• Onprofessioneel, plichtsverzuim.
• Wensen zal het niet zo maken.
• Behandel nauwkeurigheidsbeoordeling als datawetenschap, niet als een verwijt.

2. Meer fouten tolereren dan nodig is.

• Statistische prognosemethoden kunnen de nauwkeurigheid op schaal verbeteren.
• Het verbeteren van gegevensinvoer kan helpen.
• Het verzamelen en analyseren van prognosefoutstatistieken kan zwakke plekken identificeren.

3. Tijd en geld verspillen die te ver gaat om fouten te elimineren.

• Sommige product/marktcombinaties zijn inherent moeilijker te voorspellen. Na een punt, laat ze zijn (maar wees alert op nieuwe gespecialiseerde voorspellingsmethoden).
• Soms kunnen stappen die bedoeld zijn om fouten te verminderen averechts werken (bijv. aanpassing).
Laat een reactie achter

## Wat Silicon Valley Bank kan leren van Supply Chain Planning

Als je de laatste tijd je hoofd omhoog hebt gehouden, heb je misschien wat extra waanzin opgemerkt op het basketbalveld: het falen van Silicon Valley Bank. Degenen onder ons in de supply chain-wereld hebben het bankfalen misschien afgedaan als het probleem van iemand anders, maar die spijtige episode bevat ook een grote les voor ons: het belang van stresstesten die goed worden uitgevoerd.

## Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

## Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

#### recente berichten

• Electric Utilities’ Problems with Spare Parts
Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
• Correlation vs Causation: Is This Relevant to Your Job?
Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct. […]
• Smart Software Customer, Arizona Public Service to Present at USMA 2023
Smart Software CEO and APS Inventory & Logistics Manager to present USMA 2023 Session on APS supply chain transformation project and the role of inventory optimization technology in their new process. […]
• What data is needed to support Demand Planning Software Implementations
We recently met with the IT team at one of our customers to discuss data requirements and installation of our API based integration that would pull data from their on-premises installation of their ERP system. The IT manager and analyst both expressed significant concern about providing this data and seriously questioned why it needed to be provided at all. […]
• Soorten prognoseproblemen die we helpen oplossen
Het genereren van nauwkeurige statistische prognoses is geen gemakkelijke taak. Planners moeten historische gegevens continu up-to-date houden, een database met voorspellingsmodellen bouwen en beheren, weten welke voorspellingsmethoden ze moeten gebruiken, bijhouden of voorspellingsonderdrukkingen worden overschreven en rapporteren over de nauwkeurigheid van de voorspelling. Hier zijn voorbeelden van prognoseproblemen die SmartForecasts kan oplossen, samen met de soorten bedrijfsgegevens die representatief zijn voor elk. […]

#### Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

• Electric Utilities’ Problems with Spare Parts
Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
• Hoe u reserveonderdelen kunt voorspellen die weinig worden gebruikt
Wat doet u wanneer u een periodiek gevraagd artikel, zoals een reserveonderdeel, voorspelt met een gemiddelde vraag van minder dan één eenheid per maand? Meestal is de vraag nul, maar het onderdeel is zakelijk significant; het kan niet worden genegeerd en moet worden voorspeld om er zeker van te zijn dat u voldoende voorraad heeft. […]
• Reserveonderdelen, vervangende onderdelen, draaibare onderdelen en aftermarket-onderdelen
Degenen die nieuw zijn in het onderdelenplanningsspel worden vaak in de war gebracht door de vele variaties in de namen van onderdelen. Deze blog wijst op onderscheidingen die wel of niet van operationele betekenis zijn voor iemand die een vloot reserveonderdelen beheert en hoe die verschillen van invloed zijn op de voorraadplanning. […]
• De top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]

#### Blog Categorieën

Vier handige manieren om prognosefouten te meten

# Het nastreven van best practices op het gebied van vraagplanning,

### Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door prognosefouten te meten. We beginnen met een overzicht van de verschillende soorten foutstatistieken: schaalafhankelijke fout, procentuele fout, relatieve fout en schaalvrije foutstatistieken. Hoewel sommige fouten onvermijdelijk zijn, zijn er manieren om deze te verminderen, en prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid. Vervolgens zullen we het speciale probleem van de intermitterende vraag en de deel-door-nul-problemen uitleggen. Tom besluit door uit te leggen hoe je prognoses van meerdere items kunt beoordelen en hoe het vaak zinvol is om gewogen gemiddelden te gebruiken, waarbij items verschillend worden gewogen op basis van volume of omzet.

### Vier algemene typen foutstatistieken

##### 4. Schaalvrije fout

Opmerking: Schaalafhankelijke metrieken worden uitgedrukt in de eenheden van de voorspelde variabele. De andere drie worden uitgedrukt als percentages.

### 1. Schaalafhankelijke foutstatistieken

• Mean Absolute Error (MAE) ook wel Mean Absolute Deviation (MAD) genoemd
• Mediane absolute fout (MdAE)
• Root Mean Square-fout (RMSE)
• Deze statistieken drukken de fout uit in de oorspronkelijke eenheden van de gegevens.
• Bijv: eenheden, kisten, vaten, kilogrammen, dollars, liters, enz.
• Aangezien prognoses te hoog of te laag kunnen zijn, zullen de tekenen van de fouten zowel positief als negatief zijn, waardoor ongewenste annuleringen mogelijk zijn.
• Bijv.: u wilt niet dat fouten van +50 en -50 worden geannuleerd en "geen fout" weergeven.
• Om het annuleringsprobleem aan te pakken, nemen deze statistieken negatieve tekens weg door kwadratuur of absolute waarde te gebruiken.

### 2. Percentage foutmetriek

• Gemiddelde absolute procentuele fout (MAPE)
• Deze metriek drukt de grootte van de fout uit als een percentage van de werkelijke waarde van de voorspelde variabele.
• Het voordeel van deze aanpak is dat het meteen duidelijk maakt of de fout een groot probleem is of niet.
• Bijv.: stel dat de MAE 100 eenheden is. Is een typische fout van 100 eenheden verschrikkelijk? OK? groot?
• Het antwoord hangt af van de grootte van de variabele die wordt voorspeld. Als de werkelijke waarde 100 is, dan is een MAE = 100 zo groot als het ding dat wordt voorspeld. Maar als de werkelijke waarde 10.000 is, dan toont een MAE = 100 een grote nauwkeurigheid, aangezien de MAPE slechts 1% is van de werkelijke waarde.

### 3. Relatieve foutmetriek

• Mediane relatieve absolute fout (MdRAE)
• Ten opzichte van wat? Naar een benchmarkprognose.
• Welke maatstaf? Meestal de "naïeve" voorspelling.
• Wat is de naïeve voorspelling? Volgende prognosewaarde = laatste werkelijke waarde.
• Waarom de naïeve voorspelling gebruiken? Want als je daar niet tegen kunt, zit je in een zware vorm.

### 4. Schaalvrije foutmetriek

• Mediane relatief geschaalde fout (MdRSE)
• Deze statistiek drukt de absolute voorspellingsfout uit als een percentage van het natuurlijke niveau van willekeur (volatiliteit) in de gegevens.
• De volatiliteit wordt gemeten door de gemiddelde grootte van de verandering in de voorspelde variabele van de ene tijdsperiode naar de volgende.
• (Dit is dezelfde als de fout gemaakt door de naïeve voorspelling.)
• Hoe verschilt deze statistiek van de bovenstaande MdRAE?
• Ze gebruiken allebei de naïeve prognose, maar deze statistiek gebruikt fouten bij het voorspellen van de vraaggeschiedenis, terwijl de MdRAE fouten gebruikt bij het voorspellen van toekomstige waarden.
• Dit is van belang omdat er meestal veel meer historische waarden zijn dan er voorspellingen zijn.
• Dat is op zijn beurt weer van belang omdat deze statistiek zou "ontploffen" als alle gegevens nul waren, wat minder waarschijnlijk is bij gebruik van de vraaggeschiedenis.

### Het speciale probleem van intermitterende vraag

• "Intermitterende" vraag heeft veel nul-eisen vermengd met willekeurige niet-nul-eisen.
• MAPE wordt geruïneerd wanneer fouten worden gedeeld door nul.
• MdRAE kan ook kapot gaan.
• MdSAE zal minder snel kapot gaan.

### Samenvatting en opmerkingen

• Prognosestatistieken zijn noodzakelijke hulpmiddelen voor het bewaken en verbeteren van de prognosenauwkeurigheid.
• Er zijn twee hoofdklassen van statistieken: absoluut en relatief.
• Absolute metingen (MAE, MdAE, RMSE) zijn natuurlijke keuzes bij het beoordelen van prognoses van één item.
• Relatieve metingen (MAPE, MdRAE, MdSAE) zijn nuttig bij het vergelijken van de nauwkeurigheid tussen items of tussen alternatieve prognoses van hetzelfde item of bij het beoordelen van de nauwkeurigheid ten opzichte van de natuurlijke variabiliteit van een item.
• Intermitterende vraag levert problemen met delen door nul op die MdSAE verkiezen boven MAPE.
• Bij het beoordelen van prognoses van meerdere items is het vaak zinvol om gewogen gemiddelden te gebruiken, waarbij items anders worden gewogen op basis van volume of omzet.
Laat een reactie achter

## Wat Silicon Valley Bank kan leren van Supply Chain Planning

Als je de laatste tijd je hoofd omhoog hebt gehouden, heb je misschien wat extra waanzin opgemerkt op het basketbalveld: het falen van Silicon Valley Bank. Degenen onder ons in de supply chain-wereld hebben het bankfalen misschien afgedaan als het probleem van iemand anders, maar die spijtige episode bevat ook een grote les voor ons: het belang van stresstesten die goed worden uitgevoerd.

## Hebben uw statistische prognoses last van het wiggle-effect?

Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

## Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan veel verwarring veroorzaken bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren?

#### recente berichten

• Electric Utilities’ Problems with Spare Parts
Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
• Correlation vs Causation: Is This Relevant to Your Job?
Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct. […]
• Smart Software Customer, Arizona Public Service to Present at USMA 2023
Smart Software CEO and APS Inventory & Logistics Manager to present USMA 2023 Session on APS supply chain transformation project and the role of inventory optimization technology in their new process. […]
• What data is needed to support Demand Planning Software Implementations
We recently met with the IT team at one of our customers to discuss data requirements and installation of our API based integration that would pull data from their on-premises installation of their ERP system. The IT manager and analyst both expressed significant concern about providing this data and seriously questioned why it needed to be provided at all. […]
• Soorten prognoseproblemen die we helpen oplossen
Het genereren van nauwkeurige statistische prognoses is geen gemakkelijke taak. Planners moeten historische gegevens continu up-to-date houden, een database met voorspellingsmodellen bouwen en beheren, weten welke voorspellingsmethoden ze moeten gebruiken, bijhouden of voorspellingsonderdrukkingen worden overschreven en rapporteren over de nauwkeurigheid van de voorspelling. Hier zijn voorbeelden van prognoseproblemen die SmartForecasts kan oplossen, samen met de soorten bedrijfsgegevens die representatief zijn voor elk. […]

#### Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

• Electric Utilities’ Problems with Spare Parts
Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
• Hoe u reserveonderdelen kunt voorspellen die weinig worden gebruikt
Wat doet u wanneer u een periodiek gevraagd artikel, zoals een reserveonderdeel, voorspelt met een gemiddelde vraag van minder dan één eenheid per maand? Meestal is de vraag nul, maar het onderdeel is zakelijk significant; het kan niet worden genegeerd en moet worden voorspeld om er zeker van te zijn dat u voldoende voorraad heeft. […]
• Reserveonderdelen, vervangende onderdelen, draaibare onderdelen en aftermarket-onderdelen
Degenen die nieuw zijn in het onderdelenplanningsspel worden vaak in de war gebracht door de vele variaties in de namen van onderdelen. Deze blog wijst op onderscheidingen die wel of niet van operationele betekenis zijn voor iemand die een vloot reserveonderdelen beheert en hoe die verschillen van invloed zijn op de voorraadplanning. […]
• De top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]

#### Blog Categorieën

English
English
Spanish
Dutch