1-800-SMART-99
Seleccionar página
Correlation vs Causation: Is This Relevant to Your Job?

Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct.

Extrapolative vs Causal Models

Most demand forecasting uses extrapolative models. Also called time-series models, these forecast demand using only the past values of an item’s demand. Plots of past values reveal trend and seasonality and volatility, so there is a lot they are good for. But there is another type of model – causal models —that can potentially improve forecast accuracy beyond what you can get from extrapolative models.

Causal models bring more input data to the forecasting task: information on presumed forecast “drivers” external to the demand history of an item. Examples of potentially useful causal factors include macroeconomic variables like the inflation rate, the rate of GDP growth, and raw material prices. Examples not tied to the national economy include industry-specific growth rates and your own and competitors’ ad spending.  These variables are usually used as inputs to regression models, which are equations with demand as an output and causal variables as inputs.

Forecasting using Causal Models

Many firms have an S&OP process that involves a monthly review of statistical (extrapolative) forecasts in which management adjusts forecasts based on their judgement. Often this is an indirect and subjective way to work causal models into the process without doing the regression modeling.

To actually make a causal regression model, first you have to nominate a list of potentially-useful causal predictor variables. These may come from your subject matter expertise. For example, suppose you manufacture window glass. Much of your glass may end up in new homes and new office buildings. So, the number of new homes and offices being built are plausible predictor variables in a regression equation.

There is a complication here: if you are using the equation to predict something, you must first predict the predictors. For example, sales of glass next quarter may be strongly related to numbers of new homes and new office buildings next quarter. But how many new homes will there be next quarter? That’s its own forecasting problem. So, you have a potentially powerful forecasting model, but you have extra work to do to make it usable.

There is one way to simplify things: if the predictor variables are “lagged” versions of themselves. For example, the number of new building permits issued six months ago may be a good predictor of glass sales next month. You don’t have to predict the building permit data – you just have to look it up.

Is it a causal relationship or just a spurious correlation?

Causal models are the real deal: there is an actual mechanism that relates the predictor variable to the predicted variable. The example of predicting glass sales from building permits is an example.

A correlation relationship is more iffy. There is a statistical association that may or may not provide a solid basis for forecasting. For example, suppose you sell a product that happens to appeal most strongly to Dutch people but you don’t realize this. The Dutch are, on average, the tallest people in Europe. If your sales are increasing and the average height of Europeans is increasing, you might use that relationship to good effect. However, if the proportion of Dutch in the Euro zone is decreasing while the average height is increasing because the mix of men versus women is shifting toward men, what can go wrong? You will expect sales to increase because average height is increasing. But your sales are really mostly to the Dutch, and their relative share of the population is shrinking, so your sales are really going to decrease instead. In this case the association between sales and customer height is a spurious correlation.

How can you tell the difference between true and spurious relationships? The gold standard is to do a rigorous scientific experiment. But you are not likely to be in position to do that. Instead, you have to rely on your personal “mental model” of how your market works. If your hunches are right, then your potential causal models will correlate with demand and causal modeling will pay off for you, either to supplement extrapolative models or to replace them.

Tipos de problemas de pronóstico que ayudamos a resolver

Estos son ejemplos de problemas de pronóstico que SmartForecasts puede resolver, junto con los tipos de datos comerciales representativos de cada uno.

Pronosticar un artículo en función de su patrón

Dadas las siguientes seis cifras de ventas trimestrales, ¿qué ventas puede esperar para el tercer y cuarto trimestre de 2023?

Ventas por Trimestre

SmartForecasts le brinda muchas formas de abordar este problema. Puede hacer sus propios pronósticos estadísticos utilizando cualquiera de los seis Suavizado exponencial y media móvil métodos. O, como la mayoría de los pronosticadores no técnicos, puede usar el comando Automático que ahorra tiempo, que ha sido programado para seleccionar y usar automáticamente el método más preciso para sus datos. Finalmente, para incorporar su juicio comercial en el proceso de pronóstico, puede ajustar gráficamente cualquier resultado de pronóstico estadístico usando SmartForecasts. ajuste de "globo ocular" capacidades.

Pronosticar un artículo en función de su relación con otras variables.

Dada la siguiente relación histórica entre las ventas de unidades y la cantidad de representantes de ventas, ¿qué niveles de ventas puede esperar cuando se produzca el aumento planificado del personal de ventas durante los dos últimos trimestres de 2023?

Ventas y Representantes de Ventas por Trimestre

Puede responder una pregunta como esta usando el poderoso SmartForecasts Regresión comando, diseñado específicamente para facilitar las aplicaciones de pronóstico que requieren soluciones de análisis de regresión. Los modelos de regresión con un número esencialmente ilimitado de variables predictoras/independientes son posibles, aunque la mayoría de los modelos de regresión útiles usan solo un puñado de predictores.

Pronosticar simultáneamente una cantidad de artículos de productos y su total

Dadas las siguientes ventas totales de todas las camisas de vestir y la distribución de las ventas por color, ¿cuáles serán las ventas individuales y totales durante los próximos seis meses?

Ventas mensuales de camisas de vestir por color

Las funciones exclusivas de pronóstico de grupo de SmartForecasts pronostican automática y simultáneamente series de tiempo estrechamente relacionadas, como estos artículos en el mismo grupo de productos. Esto ahorra un tiempo considerable y proporciona resultados de pronóstico no solo para los artículos individuales sino también para su total. Los ajustes de "ojo" tanto a nivel de elemento como de grupo son fáciles de realizar. Puede crear rápidamente pronósticos para grupos de productos con cientos o incluso miles de artículos.

Pronóstico de miles de artículos automáticamente

Dado el siguiente registro de demanda de productos a nivel de SKU, ¿cuál puede esperar que sea la demanda durante los próximos seis meses para cada uno de los 5000 SKU?

Demanda Mensual de Producto por SKU (Unidad de Mantenimiento de Stock)

En solo unos minutos, la poderosa selección automática de SmartForecasts puede realizar un trabajo de pronóstico de este tamaño, leer los datos de demanda del producto, crear automáticamente pronósticos estadísticos para cada SKU y guardar el resultado. Los resultados están listos para exportarlos a su sistema ERP aprovechando cualquiera de nuestros conectores basados en API o mediante la exportación de archivos. Una vez configurados, los pronósticos se producirán automáticamente en cada ciclo de planificación sin la intervención del usuario.

Pronosticar la demanda que en la mayoría de los casos es cero

Un tipo de datos distinto y especialmente desafiante para pronosticar es intermitente demanda, que suele ser cero, pero salta a valores aleatorios distintos de cero en momentos aleatorios. Este patrón es típico de la demanda de lento Moviente artículos, tales como repuestos o grande boleto bienes de equipo.

Por ejemplo, considere la siguiente muestra de demanda de repuestos para aeronaves. Tenga en cuenta la preponderancia de valores cero mezclados con valores distintos de cero, a menudo en ráfagas.

SmartForecasts tiene un método único diseñado especialmente para este tipo de datos: la función de pronóstico de Demanda Intermitente. Dado que la demanda intermitente surge con mayor frecuencia en el contexto del control de inventario, esta función se enfoca en pronosticar el rango de valores probables para la demanda total durante un tiempo de anticipación, por ejemplo, la demanda acumulada durante el período del 23 de junio al 23 de agosto en el ejemplo anterior. .

Pronóstico de requisitos de inventario

La previsión de necesidades de inventario es una variante especializada de la previsión que se centra en el extremo superior del rango de valores futuros posibles.

Para simplificar, considere el problema de pronosticar los requisitos de inventario para solo un período por delante, digamos un día por delante. Por lo general, el trabajo de pronóstico consiste en estimar el nivel promedio o más probable de demanda del producto. Sin embargo, si el inventario disponible es igual a la demanda promedio, existe una probabilidad de 50% de que la demanda supere el inventario, lo que resultará en pérdida de ventas y/o pérdida de buena voluntad. Establecer el nivel de inventario en, digamos, diez veces la demanda promedio probablemente eliminará el problema de los desabastecimientos, pero seguramente resultará en costos de inventario inflados.

El truco de la optimización del inventario es encontrar un equilibrio satisfactorio entre tener suficiente inventario para satisfacer la mayor parte de la demanda sin comprometer demasiados recursos en el proceso. Por lo general, la solución es una combinación de criterio empresarial y estadísticas. La parte crítica es definir un nivel de servicio de inventario aceptable, como satisfacer 95% de demanda inmediatamente desde el stock. La parte estadística es estimar el percentil 95 de la demanda.

Cuando no se trata de demanda intermitente, SmartForecasts estima el nivel de inventario requerido asumiendo una curva de demanda en forma de campana (Normal), estimando tanto el centro como el ancho de la curva de campana y luego usando una fórmula estadística estándar para estimar el percentil deseado. La diferencia entre el nivel de inventario deseado y el nivel promedio de demanda se denomina stock de seguridad porque protege contra la posibilidad de desabastecimiento.

Cuando se trata de demanda intermitente, la curva en forma de campana es una mala aproximación a la distribución estadística de la demanda. En este caso especial, SmartForecasts utiliza tecnología patentada de pronóstico de demanda intermitente para estimar el nivel de servicio de inventario requerido.

Tres formas de estimar la precisión del pronóstico

La precisión del pronóstico es una métrica clave para juzgar la calidad de su proceso de planificación de la demanda. (No es el único. Otros incluyen oportunidad y costo; Ver 5 consejos de planificación de la demanda para calcular la incertidumbre del pronóstico.) Una vez que tenga los pronósticos, hay varias formas de resumir su precisión, generalmente designados por acrónimos oscuros de tres o cuatro letras como MAPE, RMSE y MAE. Ver Cuatro formas útiles de medir el error de pronóstico para más detalles.

Un tema menos discutido pero más fundamental es cómo se organizan los experimentos computacionales para calcular el error de pronóstico. Esta publicación compara los tres diseños experimentales más importantes. Uno de ellos es de la vieja escuela y esencialmente equivale a hacer trampa. Otro es el patrón oro. Un tercero es un recurso útil que imita el patrón oro y se considera mejor como una predicción de cómo resultará el patrón oro. La figura 1 es una vista esquemática de los tres métodos.

Figura 1: Tres formas de evaluar el error de pronóstico

El panel superior de la Figura 1 muestra la forma en que se evaluó el error de pronóstico a principios de la década de 1980 antes de que moviéramos el estado del arte al esquema que se muestra en el panel central. En los viejos tiempos, los pronósticos se evaluaban con los mismos datos que se usaban para calcular los pronósticos. Después de ajustar un modelo a los datos, los errores calculados no eran para los pronósticos del modelo sino para el modelo. encaja. La diferencia es que los pronósticos son para valores futuros, mientras que los ajustes son para valores concurrentes. Por ejemplo, suponga que el modelo de pronóstico es un promedio móvil simple de las tres observaciones más recientes. En el momento 3, el modelo calcula el promedio de las observaciones 1, 2 y 3. Este promedio luego se compararía con el valor observado en el momento 3. Llamamos a esto hacer trampa porque el valor observado en el momento 3 obtuvo un voto sobre el pronóstico. debería ser en el momento 3. Una evaluación de pronóstico real compararía el promedio de las primeras tres observaciones con el valor del próximo, cuarto, observación. De lo contrario, el pronosticador se queda con una evaluación demasiado optimista de la precisión del pronóstico.

El panel inferior de la Figura 1 muestra la mejor manera de evaluar la precisión del pronóstico. En este esquema, todos los datos históricos de demanda se utilizan para ajustar un modelo, que luego se utiliza para pronosticar valores de demanda futuros desconocidos. Eventualmente, el futuro se desarrolla, los verdaderos valores futuros se revelan y se pueden calcular los errores de pronóstico reales. Este es el estándar de oro. Esta información completa el informe de "pronósticos versus datos reales" en nuestro software.

El panel central representa una medida intermedia útil. El problema con el patrón oro es que debe esperar para saber qué tan bien funcionan los métodos de pronóstico elegidos. Este retraso no ayuda cuando se requiere elegir, en el momento, qué método de pronóstico usar para cada artículo. Tampoco proporciona una estimación oportuna de la incertidumbre del pronóstico que experimentará, lo cual es importante para la gestión de riesgos, como la cobertura del pronóstico. El camino intermedio se basa en el análisis de exclusión, que excluye (“excluye”) las observaciones más recientes y le pide al método de pronóstico que haga su trabajo sin conocer esas verdades fundamentales. Luego, los pronósticos basados en el historial de demanda abreviado se pueden comparar con los valores reales retenidos para obtener una evaluación honesta del error de pronóstico.

Mejore la precisión del pronóstico mediante la gestión de errores

# previsión y optimización de inventario

### Mejore la precisión de la prediccion, optimice el inventario y maximice los niveles de servicio

En este video, el Dr. Thomas Willemain, cofundador y vicepresidente sénior de investigación, habla sobre cómo mejorar la precisión de los pronósticos mediante la gestión de errores. Este video es el primero de nuestra serie sobre métodos efectivos para mejorar la precisión de los pronósticos. Comenzamos observando cómo el error de pronóstico causa dolor y el costo consecuente relacionado con él. A continuación te explicaremos los tres errores más comunes a evitar que nos pueden ayudar a aumentar los ingresos y evitar el exceso de inventario. Tom concluye revisando los métodos para mejorar la Precisión del Pronóstico, la importancia de medir el error de pronóstico y las oportunidades tecnológicas para mejorarlo.

### El error de pronóstico puede tener consecuencias

Considere un elemento de muchos

• Fabricar el producto X cuesta \$100 y genera una ganancia neta de \$50 por unidad.
• Las ventas del Producto X resultarán ser de 1000/mes durante los próximos 12 meses.
• Considere un elemento de muchos

¿Cuál es el costo del error de pronóstico?

• Si el pronóstico es 10% alto, termine el año con \$120,000 de exceso de inventario.
• 100 extra/mes x 12 meses x \$100/unidad
• Si el pronóstico es 10% bajo, pierda \$60,000 de ganancias.
• 100 muy pocos/mes x 12 meses x \$50/unidad

### Tres errores a evitar

1. Ignorar el error.

• Falta de profesionalidad, abandono del deber.
• Desear no hará que sea así.
• Trate la evaluación de precisión como ciencia de datos, no como un juego de culpas.

2. Tolerar más error del necesario.

• Los métodos de pronóstico estadístico pueden mejorar la precisión a escala.
• Mejorar las entradas de datos puede ayudar.
• Recopilar y analizar las métricas de error de pronóstico puede identificar puntos débiles.

3. Perder tiempo y dinero yendo demasiado lejos tratando de eliminar el error.

• Algunas combinaciones de producto/mercado son inherentemente más difíciles de pronosticar. Después de un punto, déjelos en paz (pero esté alerta a los nuevos métodos de pronóstico especializados).
• A veces, los pasos destinados a reducir el error pueden resultar contraproducentes (por ejemplo, el ajuste).
Deja un comentario

## Lo que Silicon Valley Bank puede aprender de la planificación de la cadena de suministro

Si últimamente tenía la cabeza en alto, es posible que haya notado alguna locura adicional fuera de la cancha de baloncesto: la quiebra de Silicon Valley Bank. Es posible que aquellos de nosotros en el mundo de la cadena de suministro hayamos descartado la quiebra del banco como un problema de otra persona, pero ese lamentable episodio también tiene una gran lección para nosotros: la importancia de las pruebas de estrés realizadas correctamente.

## ¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

## Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero?

#### Mensajes recientes

• Electric Utilities’ Problems with Spare Parts
Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
• Correlation vs Causation: Is This Relevant to Your Job?
Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct. […]
• Smart Software Customer, Arizona Public Service to Present at USMA 2023
Smart Software CEO and APS Inventory & Logistics Manager to present USMA 2023 Session on APS supply chain transformation project and the role of inventory optimization technology in their new process. […]
• What data is needed to support Demand Planning Software Implementations
We recently met with the IT team at one of our customers to discuss data requirements and installation of our API based integration that would pull data from their on-premises installation of their ERP system. The IT manager and analyst both expressed significant concern about providing this data and seriously questioned why it needed to be provided at all. […]
• Tipos de problemas de pronóstico que ayudamos a resolver
Generar pronósticos estadísticos precisos no es una tarea fácil. Los planificadores deben mantener los datos históricos continuamente actualizados, crear y administrar una base de datos de modelos de pronóstico, saber qué métodos de pronóstico usar, realizar un seguimiento de las anulaciones de pronóstico e informar sobre la precisión del pronóstico. Estos son ejemplos de problemas de pronóstico que SmartForecasts puede resolver, junto con los tipos de datos comerciales representativos de cada uno. […]

#### Optimización de inventario para fabricantes, distribuidores y MRO

• Electric Utilities’ Problems with Spare Parts
Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
• Cómo Pronosticar Repuestos con Bajo Uso
¿Qué hace cuando pronostica un artículo con demanda intermitente, como una pieza de repuesto, con una demanda promedio de menos de una unidad por mes? La mayor parte del tiempo, la demanda es cero, pero la parte es significativa en un sentido comercial; no se puede ignorar y se debe pronosticar para asegurarse de tener el stock adecuado. […]
• Repuestos, repuestos OEM, rotables y repuestos inmediatos
Aquellos que son nuevos en el juego de planificación de piezas a menudo se confunden con las muchas variaciones en los nombres de las piezas. Este blog señala distinciones que tienen o no importancia operativa para alguien que administra una flota de piezas de repuesto y cómo esas diferencias afectan la planificación del inventario. […]
• Las 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]

#### Categorías de blogs

Cuatro formas útiles de medir el error de pronóstico

# previsión y optimización de inventario

### Mejore la precisión de la prediccion, optimice el inventario y maximice los niveles de servicio

En este video, el Dr. Thomas Willemain, cofundador y vicepresidente senior de investigación, habla sobre cómo mejorar la precisión de los pronósticos midiendo el error de pronóstico. Comenzamos con una descripción general de los distintos tipos de métricas de error: error dependiente de escala, error porcentual, error relativo y métrica de error sin escala. Si bien algunos errores son inevitables, hay formas de reducirlos, y las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico. Luego explicaremos el problema especial de la demanda intermitente y los problemas de división por cero. Tom concluye explicando cómo evaluar los pronósticos de múltiples artículos y cómo a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.

### Cuatro tipos generales de métricas de error

##### 4. Error sin escala

Observación: Las métricas dependientes de la escala se expresan en las unidades de la variable pronosticada. Los otros tres se expresan como porcentajes.

### 1. Métricas de error dependientes de la escala

• Error absoluto medio (MAE), también conocido como desviación absoluta media (MAD)
• Error absoluto medio (MdAE)
• Estas métricas expresan el error en las unidades originales de los datos.
• Ej: unidades, cajas, barriles, kilogramos, dólares, litros, etc.
• Dado que los pronósticos pueden ser demasiado altos o demasiado bajos, los signos de los errores serán positivos o negativos, lo que permitirá cancelaciones no deseadas.
• Ej: no desea que los errores de +50 y -50 se cancelen y muestren "sin error".
• Para lidiar con el problema de la cancelación, estas métricas eliminan los signos negativos elevando al cuadrado o utilizando el valor absoluto.

### 2. Métrica de porcentaje de error

• Error porcentual absoluto medio (MAPE)
• Esta métrica expresa el tamaño del error como porcentaje del valor real de la variable pronosticada.
• La ventaja de este enfoque es que deja claro de inmediato si el error es importante o no.
• Ej: Supongamos que el MAE es de 100 unidades. ¿Es horrible un error típico de 100 unidades? ¿OK? ¿estupendo?
• La respuesta depende del tamaño de la variable que se pronostica. Si el valor real es 100, entonces un MAE = 100 es tan grande como lo que se pronostica. Pero si el valor real es 10,000, entonces un MAE = 100 muestra una gran precisión, ya que el MAPE es solo 1% del real.

### 3. Métrica de error relativo

• Error absoluto relativo mediano (MdRAE)
• ¿Relativo a qué? A un pronóstico de referencia.
• ¿Qué punto de referencia? Por lo general, el pronóstico "ingenuo".
• ¿Cuál es el pronóstico ingenuo? Próximo valor de previsión = último valor real.
• ¿Por qué utilizar el pronóstico ingenuo? Porque si no puedes vencer eso, estás en una forma difícil.

### 4. Métrica de error sin escala

• Error escalado relativo mediano (MdRSE)
• Esta métrica expresa el error de pronóstico absoluto como un porcentaje del nivel natural de aleatoriedad (volatilidad) en los datos.
• La volatilidad se mide por el tamaño promedio del cambio en la variable pronosticada de un período de tiempo al siguiente.
• (Esto es lo mismo que el error cometido por el pronóstico ingenuo).
• ¿En qué se diferencia esta métrica de la MdRAE anterior?
• Ambos usan el pronóstico ingenuo, pero esta métrica usa errores al pronosticar el historial de demanda, mientras que MdRAE usa errores al pronosticar valores futuros.
• Esto es importante porque normalmente hay muchos más valores históricos que pronósticos.
• A su vez, eso es importante porque esta métrica "explotaría" si todos los datos fueran cero, lo que es menos probable cuando se usa el historial de demanda.

### El problema especial de la demanda intermitente

• La demanda "intermitente" tiene muchas demandas cero mezcladas con demandas aleatorias distintas de cero.
• MAPE se arruina cuando los errores se dividen por cero.
• MdRAE también puede arruinarse.
• Es menos probable que MdSAE se arruine.

### Resumen y comentarios

• Las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico.
• Hay dos clases principales de métricas: absolutas y relativas.
• Las medidas absolutas (MAE, MdAE, RMSE) son opciones naturales al evaluar los pronósticos de un artículo.
• Las medidas relativas (MAPE, MdRAE, MdSAE) son útiles al comparar la precisión entre elementos o entre pronósticos alternativos del mismo elemento o al evaluar la precisión en relación con la variabilidad natural de un elemento.
• La demanda intermitente presenta problemas de división por cero que favorecen a MdSAE sobre MAPE.
• Al evaluar los pronósticos de varios artículos, a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.
Deja un comentario

## Lo que Silicon Valley Bank puede aprender de la planificación de la cadena de suministro

Si últimamente tenía la cabeza en alto, es posible que haya notado alguna locura adicional fuera de la cancha de baloncesto: la quiebra de Silicon Valley Bank. Es posible que aquellos de nosotros en el mundo de la cadena de suministro hayamos descartado la quiebra del banco como un problema de otra persona, pero ese lamentable episodio también tiene una gran lección para nosotros: la importancia de las pruebas de estrés realizadas correctamente.

## ¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

## Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero?

#### Mensajes recientes

• Electric Utilities’ Problems with Spare Parts
Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
• Correlation vs Causation: Is This Relevant to Your Job?
Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct. […]
• Smart Software Customer, Arizona Public Service to Present at USMA 2023
Smart Software CEO and APS Inventory & Logistics Manager to present USMA 2023 Session on APS supply chain transformation project and the role of inventory optimization technology in their new process. […]
• What data is needed to support Demand Planning Software Implementations
We recently met with the IT team at one of our customers to discuss data requirements and installation of our API based integration that would pull data from their on-premises installation of their ERP system. The IT manager and analyst both expressed significant concern about providing this data and seriously questioned why it needed to be provided at all. […]
• Tipos de problemas de pronóstico que ayudamos a resolver
Generar pronósticos estadísticos precisos no es una tarea fácil. Los planificadores deben mantener los datos históricos continuamente actualizados, crear y administrar una base de datos de modelos de pronóstico, saber qué métodos de pronóstico usar, realizar un seguimiento de las anulaciones de pronóstico e informar sobre la precisión del pronóstico. Estos son ejemplos de problemas de pronóstico que SmartForecasts puede resolver, junto con los tipos de datos comerciales representativos de cada uno. […]

#### Optimización de inventario para fabricantes, distribuidores y MRO

• Electric Utilities’ Problems with Spare Parts
Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
• Cómo Pronosticar Repuestos con Bajo Uso
¿Qué hace cuando pronostica un artículo con demanda intermitente, como una pieza de repuesto, con una demanda promedio de menos de una unidad por mes? La mayor parte del tiempo, la demanda es cero, pero la parte es significativa en un sentido comercial; no se puede ignorar y se debe pronosticar para asegurarse de tener el stock adecuado. […]
• Repuestos, repuestos OEM, rotables y repuestos inmediatos
Aquellos que son nuevos en el juego de planificación de piezas a menudo se confunden con las muchas variaciones en los nombres de las piezas. Este blog señala distinciones que tienen o no importancia operativa para alguien que administra una flota de piezas de repuesto y cómo esas diferencias afectan la planificación del inventario. […]
• Las 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]

#### Categorías de blogs

English
English
Spanish
Dutch