Hoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden

Smart IP&O wordt mogelijk gemaakt door de SmartForecasts®-prognose-engine die automatisch de meest geschikte methode voor elk item selecteert. Smart Forecast-methoden worden hieronder vermeld:

  • Eenvoudig voortschrijdend gemiddelde en enkele exponentiële afvlakking voor platte, ruisige gegevens
  • Lineair voortschrijdend gemiddelde en dubbele exponentiële afvlakking voor trendgegevens
  • Winters Additief en Winters Multiplicatief voor seizoens- en seizoens- en trendgegevens.

Deze blog legt uit hoe elk model werkt met behulp van tijdgrafieken van historische en voorspelde gegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen.

 

Seizoensgebondenheid
Als u seizoensinvloeden wilt forceren (of voorkomen) in de prognose, kies dan voor Winters-modellen. Beide methoden vereisen 2 volle jaren geschiedenis.

'Winter is multiplicatief zal de grootte van de pieken of dalen van seizoenseffecten bepalen op basis van een procentueel verschil met een trending gemiddeld volume. Het past niet goed bij items met een zeer laag volume vanwege deling door nul bij het bepalen van dat percentage. Merk in de onderstaande afbeelding op dat de grote procentuele daling van de seizoensgebonden vraag in de geschiedenis naar verwachting zal voortduren gedurende de prognosehorizon, waardoor het lijkt alsof er geen seizoensgebonden vraag is, ondanks het gebruik van een seizoensmethode.

 

Winter's software voor multiplicatieve voorspellingsmethode

Statistische voorspelling gemaakt met de multiplicatieve methode van Winter. 

 

Toevoeging voor de winter zal de grootte van de pieken of dalen van seizoenseffecten bepalen op basis van een eenheidsverschil met het gemiddelde volume. Het past niet goed als er een significante trend in de gegevens is. Let op in de afbeelding hieronder dat seasonaliteit wordt nu voorspeld op basis van de gemiddelde eenheidsverandering in seizoensgebondenheid. De voorspelling geeft dus nog steeds duidelijk het seizoenspatroon weer ondanks de neerwaartse trend in zowel het niveau als de seizoenspieken/dalen.

Software voor additieve voorspellingsmethode van Winter

Statistische voorspelling gemaakt met de additieve methode van Winter.

 

Trend

Als u trend omhoog of omlaag wilt forceren (of voorkomen) om in de prognose te tonen, beperk dan de gekozen methoden tot (of verwijder de methoden van) Lineair voortschrijdend gemiddelde en Double Exponential Smoothing.

 Dubbele exponentiële afvlakking zal een langetermijntrend oppikken. Het past niet goed als er weinig historische datapunten zijn.

Double exponential smoothing Prognosemethode software

Statistische voorspelling geproduceerd met Double Exponential Smoothing

 

Lineair voortschrijdend gemiddelde zal trends op kortere termijn oppikken. Het is niet geschikt voor zeer volatiele gegevens

Lineair voortschrijdend gemiddelde Prognosemethode software

 

Niet-trending en niet-seizoensgebonden gegevens
Als u wilt forceren (of voorkomen) dat een gemiddelde wordt weergegeven in de prognose, beperk dan de gekozen methoden tot (of verwijder de methoden van) Eenvoudig voortschrijdend gemiddelde en Enkelvoudig exponentieel effenen.

Enkele exponentiële afvlakking zal de meest recente gegevens zwaarder wegen en een vlakke lijnprognose produceren. Het is niet geschikt voor trending- of seizoensgegevens.

Single exponential smoothing Prognosemethode software

Statistische voorspelling met Single Exponential Smoothing

Eenvoudig voortschrijdend gemiddelde zal voor elke periode een gemiddelde vinden, dat soms lijkt te wiebelen, en beter voor middelingen op langere termijn. Het is niet geschikt voor trending- of seizoensgegevens.

Eenvoudige software voor voortschrijdend gemiddelde Voorspellingsmethode

Statistische voorspelling met behulp van eenvoudig voortschrijdend gemiddelde

 

 

 

Het gemiddelde is niet het antwoord

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Fluctuaties in de toeleveringsketen van een voorraad zijn onvermijdelijk. Willekeur, die een bron van verwarring en frustratie kan zijn, garandeert dit. Een schip met goederen uit China kan vertraging oplopen door een storm op zee. Een plotselinge toename van de vraag op een dag kan de voorraad in één dag wegvagen, waardoor u niet meer aan de vraag van de volgende dag kunt voldoen. Willekeur zorgt voor fricties die het moeilijk maken om je werk te doen.

Op het eerste gezicht lijkt het soms het beste om op willekeur te reageren met de struisvogelbenadering: kop in het zand. U kunt genoegen nemen met een voorspelling en ervan uitgaan dat de voorspelling altijd klopt. De fout in die benadering is dat het statistische methoden negeert die ons in staat stellen gebruik te maken van een schat aan kennis over onze kennis zelf - hoeveel vertrouwen we kunnen hebben in onze voorspellingen en met welke brede mogelijkheden we worden geconfronteerd. De efficiënte aanpak van de problemen die voortkomen uit willekeur is niet om onzekerheid te negeren, maar om deze met open ogen te omarmen.

Als een fundamenteel principe van Smart Software's benadering van voorspelling, zullen we u altijd een beoordeling geven van de mate van onzekerheid in prognoses. Als u niets meer verwacht dan een absoluut cijfer - de vraag naar widgets in februari zal 120 eenheden zijn - kunt u het toegevoegde element van onzekerheid afdoen als negatief, of het vertrouwen verliezen in een voorspelling waarvan u had gehoopt dat deze definitief zou zijn. Maar we pleiten voor wat wij beschouwen als de benadering voor volwassenen; u moet weten wat u riskeert wanneer u zich aan een prognose houdt en uw besluitvorming daarop baseert.

Uw prognoses kunnen grote gevolgen hebben die verder gaan dan voorraadniveaus. Ze kunnen uw behoeften aan grondstoffen of personeelsniveau bepalen - prognoses zijn de drijvende kracht achter veel belangrijke beslissingen over de toewijzing van middelen. Als u te veel vertrouwen heeft in de meest waarschijnlijke uitkomst, zonder ook specifiek te overwegen hoe waarschijnlijk het is, begrijpt u de risico's waarmee u wordt geconfronteerd niet echt en kunt u uzelf in een precaire positie brengen.

De noodzaak om volledig geïnformeerde beslissingen te nemen, dwingt ons om in een prognose het plus/minus bereik van resultaten te zien met een bepaalde waarschijnlijkheid van voorkomen. In het specifieke geval van prognoses die in voorraadsystemen gaan, is dit een belangrijk onderdeel van het opzettelijk plannen voor onvoorziene gebeurtenissen. Zo bepaalt u niet alleen de voorraad die u moet aanhouden om aan de typische vraag te voldoen, maar ook de extra voorraad die u bij de hand moet hebben om de meest onverwachte uitkomsten op te vangen.

Dit belang neemt alleen maar toe wanneer u probeert een betrouwbare voorraad kritieke reserveonderdelen aan te houden. Tussen de kosten van het opslaan van extra inventaris en het rekening houden met de mate van betrouwbaarheid van uw prognoses, is er een balans die zich uitkristalliseert wanneer een vliegtuig dat u in de lucht nodig heeft aan de grond staat, omdat u geen vervanging voor een beschadigd onderdeel heeft.

(Terwijl het aanleggen van extra voorraad afhankelijk is van de bovenkant van het onzekerheidsbereik, wordt als de cashflow krap is, de onderkant van het bereik belangrijk. Treasury-minded gebruikers vinden waarde in deze andere kant van onzekerheid in scenario's waarin zelfs minimale overbevoorrading kan bijvoorbeeld meer een probleem zijn dan een gemiste verkoopkans. Betrouwbare informatie over de minst waarschijnlijke uitkomsten loont op dit moment.)

Inventaristheorie zegt dat je moet nadenken over de uiteinden van waarschijnlijke mogelijkheden en je moet voorbereiden om met meer scenario's om te gaan dan alleen wat het meest waarschijnlijk is. Willekeur is een realiteit die niet kan worden genegeerd. Het gemiddelde is niet het antwoord.

Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Wat te doen als een statistische prognose geen steek houdt

Wat te doen als een statistische prognose geen steek houdt

Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten.

recente berichten

  • Vijftien vragen die laten zien hoe prognoses in uw bedrijf worden berekendVijftien vragen die laten zien hoe prognoses in uw bedrijf worden berekend
    In een recent LinkedIn-bericht heb ik vier vragen gedetailleerd beschreven die, wanneer ze worden beantwoord, zullen onthullen hoe prognoses in uw bedrijf worden gebruikt. In dit artikel hebben we vragen opgesomd die u kunt stellen om te onthullen hoe prognoses worden gemaakt. […]
  • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
    We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
  • Stijl zakengroep in klassieke zakenpakken met verrekijkers en telescopen reproduceren verschillende voorspellingsmethodenHoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden
    Deze blog legt uit hoe elk voorspellingsmodel werkt met behulp van tijdgrafieken van historische en voorspellingsgegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen. […]
  • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
  • Wat te doen als een statistische prognose geen steek houdtWat te doen als een statistische prognose geen steek houdt
    Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de prognose er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]
    • Fabrieksarbeider-ingenieur die in de fabriek werkt met behulp van een tabletcomputer om de waterleiding van de onderhoudsketel in de fabriek te controleren.Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Portret van fabrieksarbeider vrouw met blauwe veiligheidshelm houdt tablet vast en staat in de werkplaats voor reserveonderdelen. Concept van vertrouwen in het werken met software voor het plannen van reserveonderdelen.Het plannen van reserveonderdelen is niet zo moeilijk als u denkt
      Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt. […]
    • Werknemer in een magazijn voor auto-onderdelen met software voor voorraadplanningServicegestuurde planning voor bedrijven met serviceonderdelen
      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen. […]