Vier veelgemaakte fouten bij het plannen van aanvullingsdoelen

Of u nu 'Min/Max' of 'bestelpunt' en 'bestelhoeveelheid' gebruikt om te bepalen wanneer en hoeveel u moet bijvullen, uw aanpak kan enorme efficiëntie opleveren of juist niet. Belangrijkste fouten om te vermijden:

 

  1. Niet regelmatig opnieuw kalibreren
  2. Min/Max alleen bekijken als er een probleem is
  3. Het gebruik van prognosemethoden voldoet niet aan de taak
  4. Ervan uitgaande dat gegevens te traag of onvoorspelbaar zijn om er toe te doen

 

We hebben meer dan 150.000 combinaties van SKU x locatie. Onze vraag is intermitterend. Omdat het langzaam gaat, hoeven we onze bestelpunten niet vaak opnieuw te berekenen. We doen dit misschien één keer per jaar, maar we bekijken de bestelpunten wanneer er een probleem is.” - Materiaalbeheerder.

 

Deze reactieve benadering zal leiden tot miljoenen overtollige voorraden, voorraadtekorten en veel tijdverspilling bij het beoordelen van gegevens wanneer 'er iets misgaat'. Toch heb ik in de loop der jaren van zoveel voorraadprofessionals ditzelfde afzien gehoord. Het is duidelijk dat we meer moeten doen om te delen waarom dit denken zo problematisch is.

Het is waar dat voor veel onderdelen een herberekening van de bestelpunten met up-to-date historische gegevens en doorlooptijden niet veel zal veranderen, vooral als patronen zoals trend of seizoensinvloeden niet aanwezig zijn. Veel onderdelen hebben echter baat bij een herberekening, vooral als de doorlooptijden of de recente vraag zijn veranderd. Bovendien neemt de kans op een significante wijziging die een herberekening noodzakelijk maakt, toe naarmate u langer wacht. Ten slotte hebben die maanden zonder eisen ook invloed op de kansen en mogen niet ronduit worden genegeerd. Het belangrijkste punt is echter dat het onmogelijk is om te weten wat er wel of niet zal veranderen in uw prognose, dus het is beter om regelmatig opnieuw te kalibreren.

 

  Planning Aanvullingsdoelen Software berekenen

Deze opvallende casus uit gegevens uit de echte wereld illustreert een scenario waarin regelmatige en geautomatiseerde herkalibratie uitblinkt: de voordelen van snelle reacties op veranderende vraagpatronen zoals deze tellen snel op. In het bovenstaande voorbeeld vertegenwoordigt de X-as dagen en vertegenwoordigt de Y-as de vraag. Als u enkele maanden zou moeten wachten tussen het opnieuw kalibreren van uw bestelpunten, zou u ongetwijfeld veel te vroeg bestellen. Door uw bestelpunt veel vaker opnieuw te kalibreren, vangt u de verandering in de vraag op, waardoor u veel nauwkeuriger kunt bestellen.

 

In plaats van te wachten tot u een probleem hebt, kunt u alle onderdelen elke planningscyclus minstens één keer per maand opnieuw kalibreren. Hierdoor wordt gebruik gemaakt van de nieuwste gegevens en wordt het voorraadbeleid proactief aangepast, waardoor problemen worden vermeden die handmatige controles en voorraadtekorten of -overschotten zouden veroorzaken.

De aard van uw (potentieel gevarieerde) gegevens moet ook worden gekoppeld aan de juiste prognosetools. Als records voor sommige onderdelen trend- of seizoenspatronen laten zien, kan het gebruik van targetingprognosemethoden om deze patronen te accommoderen een groot verschil maken. Evenzo, als de gegevens frequente nulwaarden laten zien (intermitterende vraag), kunnen voorspellingsmethoden die niet rond dit speciale geval zijn gebouwd, gemakkelijk onbetrouwbare resultaten opleveren.

Automatiseer, herkalibreer en bekijk uitzonderingen. Speciaal gebouwde software doet dit automatisch. Zie het op een andere manier: is het beter om eenmaal per jaar een hoop geld in uw 401K te storten of "dollarkostengemiddelde" door het hele jaar door kleinere, even grote bedragen te storten. Het regelmatig opnieuw kalibreren van beleid zal in de loop van de tijd een maximaal rendement opleveren, net zoals dollar cost avering dat zal doen voor uw beleggingsportefeuille.

Hoe vaak herijkt u uw voorraadbeleid opnieuw? Waarom?

 

 

Voorraad beheren te midden van regimeverandering

Als je de uitdrukking "regimeverandering" op het nieuws hoort, denk je meteen aan een beladen geopolitieke gebeurtenis. Statistici gebruiken de uitdrukking anders, op een manier die van groot belang is voor vraagplanning en voorraadoptimalisatie. Deze blog gaat over “regime change” in statistische zin, dat wil zeggen een grote verandering in het karakter van de vraag naar een voorraadartikel.

De vraaggeschiedenis van een artikel is de brandstof die de prognosemachines van vraagplanners aandrijft. Over het algemeen geldt: hoe meer brandstof, hoe beter, waardoor we een betere oplossing hebben voor het gemiddelde niveau, de volatiliteit, de grootte en frequentie van eventuele pieken, de vorm van elk seizoenspatroon en de grootte en richting van elke trend.

Maar er is één grote uitzondering op de regel dat "meer gegevens betere gegevens zijn." Als er een grote verschuiving in uw wereld plaatsvindt en de nieuwe vraag lijkt niet op de oude vraag, dan worden oude gegevens gevaarlijk.

Moderne software kan nauwkeurige prognoses maken van de vraag naar artikelen en verstandige keuzes voorstellen voor voorraadparameters zoals bestelpunten en bestelhoeveelheden. Maar de geldigheid van deze berekeningen hangt af van de relevantie van de gegevens die in hun berekening worden gebruikt. Oude gegevens van een oud regime weerspiegelen niet langer de huidige realiteit, dus door ze in berekeningen op te nemen, ontstaan voorspellingsfouten voor vraagplanners en ofwel overtollige voorraad of onaanvaardbare stockout-percentages voor voorraadplanners.

Dat gezegd hebbende, als je een recente regimewisseling zou doorstaan en de verouderde gegevens zou weggooien, zou je veel minder gegevens hebben om mee te werken. Dit heeft zijn eigen kosten, omdat alle schattingen die op basis van de gegevens worden berekend een grotere statistische onzekerheid zouden hebben, ook al zouden ze minder vertekend zijn. In dit geval zouden uw berekeningen meer moeten steunen op een combinatie van statistische analyse en uw eigen deskundig oordeel.

Op dit punt kunt u zich afvragen: "Hoe kan ik weten of en wanneer er een regimewisseling heeft plaatsgevonden?" Als je al een tijdje aan het werk bent en je je op je gemak voelt bij het bekijken van tijdschema's van de vraag naar items, zul je over het algemeen regimeverandering herkennen wanneer je het ziet, tenminste als het niet te subtiel is. Afbeelding 1 toont enkele praktijkvoorbeelden die voor de hand liggen.

Figuur 1 Vier voorbeelden van regimeverandering in de reële vraag naar artikelen

Afbeelding 1: Vier voorbeelden van regimeverandering in de vraag naar artikelen in de echte wereld

 

Helaas kunnen minder voor de hand liggende veranderingen toch significante effecten hebben. Bovendien hebben de meeste van onze klanten het te druk om alle items die ze beheren zelfs maar één keer per kwartaal handmatig te controleren. Als je bijvoorbeeld 100 items overschrijdt, wordt het een zware taak om al die tijdreeksen te bekijken. Gelukkig kan software goed de vraag naar tienduizenden items monitoren en u waarschuwen voor items die mogelijk uw aandacht nodig hebben. Ook dan kunt u ervoor zorgen dat de software niet alleen regimeverandering detecteert, maar ook automatisch alle gegevens uitsluit die zijn verzameld vóór de meest recente regimeverandering, indien van toepassing. Met andere woorden, u kunt zowel automatische waarschuwing voor regimeverandering als automatische bescherming tegen regimeverandering krijgen.

Zie onze vorige blog over dit onderwerp voor meer informatie over de basisprincipes van regimeverandering: https://smartcorp.com/blog/demandplanningregimechange/  

 

Een voorbeeld met getallen erin

Als u meer wilt weten, lees dan verder om een numeriek voorbeeld te zien van hoeveel regimeverandering de berekening van een bestelpunt voor een kritisch reserveonderdeel kan veranderen. Hier is een scenario om het punt te illustreren.

Scenario

  • Doel: bereken het bestelpunt dat nodig is om het risico van voorraadtekort te beheersen tijdens het wachten op aanvulling. Neem aan dat het beoogde voorraadrisico 5% is.
  • Stel dat het artikel een intermitterende dagelijkse vraag heeft, met vele dagen zonder vraag.
  • Stel dat de dagelijkse vraag een Poisson-verdeling heeft met een gemiddelde van 1,0 eenheden per dag.
  • Stel dat de doorlooptijd van de aanvulling altijd 30 dagen is.
  • De doorlooptijdvraag zal willekeurig zijn, dus het heeft een kansverdeling en het bestelpunt is de 95e percentiel van de verdeling.
  • Neem aan dat het effect van regimewisseling is dat de gemiddelde dagelijkse vraag wordt verhoogd of verlaagd.
  • Neem aan dat er een jaar aan dagelijkse gegevens beschikbaar zijn voor het schatten van de gemiddelde dagelijkse vraag per eenheid.

 

Figuur 2 Voorbeeld van verandering in gemiddelde vraag en steekproef van willekeurige dagelijkse vraag

Figuur 2 Voorbeeld van verandering in gemiddelde vraag en steekproef van willekeurige dagelijkse vraag

 

Figuur 2 toont een vorm van dit scenario. Het bovenste paneel laat zien dat de gemiddelde dagelijkse vraag na 270 dagen stijgt van 1,0 naar 1,5. Het onderste paneel toont een manier waarop de dagelijkse vraag van een jaar kan verschijnen. (Op dit moment heb je misschien het gevoel dat het berekenen van al deze dingen ingewikkeld is, zelfs voor wat een vereenvoudigd scenario blijkt te zijn. Daarom hebben we software!)

Analyse

Succesvolle berekening van het juiste bestelpunt hangt af van wanneer regimeverandering plaatsvindt en hoe groot een verandering plaatsvindt. We simuleerden regimewisselingen van verschillende groottes op verschillende tijdstippen binnen een periode van 365 dagen. Rond een basisvraag van 1,0 eenheden per dag hebben we verschuivingen in de vraag ("shift") van ±25% en ±50% bestudeerd, evenals een referentiegeval zonder verandering. We hebben het tijdstip van de wijziging ("t.break") vastgesteld op 90, 180 en 270 dagen. In elk geval hebben we twee schattingen van het bestelpunt berekend: de "ideale" waarde gegeven perfecte kennis van de gemiddelde vraag in het nieuwe regime ("ROP.true"), en de geschatte waarde van de gemiddelde vraag berekend door de regimeverandering te negeren en het gebruik van alle vraaggegevens van het afgelopen jaar (“ROP.all”).

Tabel 1 toont de schattingen van het bestelpunt berekend over 100 simulaties. Het middelste blok is het referentiegeval, waarin er geen verandering is in de dagelijkse vraag, die vast blijft op 1 eenheid per dag. Het gekleurde blok onderaan is het meest extreem stijgende scenario, waarbij de vraag stijgt tot 1,5 eenheden/dag ofwel een derde, de helft of tweederde van het jaar.

Uit deze simulaties kunnen we verschillende conclusies trekken.

ROP.true: De juiste keuze voor bestelpunt neemt toe of af volgens de verandering in de gemiddelde vraag na de regimeverandering. De relatie is niet eenvoudig lineair: de tabel omvat een 600%-bereik van vraagniveaus (0,25 tot 1,50) maar een 467%-bereik van bestelpunten (van 12 tot 56).

ROP.all: Het negeren van de regimewisseling kan leiden tot grove overschattingen van het bestelpunt wanneer de vraag daalt en tot grove onderschattingen wanneer de vraag toeneemt. Zoals we zouden verwachten, hoe later de regimewisseling, hoe erger de fout. Als de vraag bijvoorbeeld twee derde van het jaar onopgemerkt stijgt van 1,0 naar 1,5 eenheden per dag, zou het berekende bestelpunt van 43 eenheden 13 eenheden minder zijn dan het zou moeten zijn.

Een woord van waarschuwing: Tabel 1 laat zien dat het baseren van de berekeningen van bestelpunten met alleen gegevens van na een regimewisseling meestal het juiste antwoord geeft. Wat het niet laat zien, is dat de schattingen onstabiel kunnen zijn als er na de wijziging zeer weinig vraaggeschiedenis is. Daarom moet je in de praktijk wachten met reageren op de regimewisseling totdat er een behoorlijk aantal waarnemingen is verzameld in het nieuwe regime. Dit kan betekenen dat u alle vraaggeschiedenis moet gebruiken, zowel vóór als na de wijziging, totdat bijvoorbeeld 60 of 90 dagen aan geschiedenis zijn verzameld voordat de gegevens vóór de wijziging worden genegeerd.

 

Tabel 1 Correcte en geschatte bestelpunten voor verschillende scenario's voor regimeverandering

Tabel 1 Correcte en geschatte bestelpunten voor verschillende scenario's voor regimeverandering

Het Supply Chain Blame-spel: Top 3 excuses voor voorraadtekorten en -overschotten

1. Tekorten wijten aan variabiliteit in de doorlooptijd
Leveranciers komen vaak te laat, soms veel. Vertragingen in de doorlooptijd en variabiliteit in de levering zijn levensfeiten in de toeleveringsketen, toch worden voorraaddragende organisaties vaak verrast als een leverancier te laat is. Een effectief inventarisplanningsproces omarmt deze feiten van het leven en ontwikkelt beleid dat effectief rekening houdt met deze onzekerheid. Natuurlijk zullen er momenten zijn waarop vertragingen in de doorlooptijd uit het niets komen. Maar meestal wordt het voorraadbeleid, zoals bestelpunten, veiligheidsvoorraden en Min/Max-niveaus, niet vaak genoeg opnieuw gekalibreerd om veranderingen in de doorlooptijd in de loop van de tijd op te vangen. Veel bedrijven beoordelen het bestelpunt pas nadat het is geschonden, in plaats van opnieuw te kalibreren na elke nieuwe ontvangst van de doorlooptijd. We hebben situaties gezien waarin de Min/Max-instellingen alleen jaarlijks opnieuw worden gekalibreerd of zelfs volledig handmatig zijn. Als u een berg onderdelen heeft met oude Min/Max-niveaus en bijbehorende doorlooptijden die een jaar geleden relevant waren, zou het geen verrassing moeten zijn dat u niet genoeg voorraad heeft om u vast te houden tot de volgende bestelling arriveert.

 

2. Overdaad de schuld geven van slechte verkoop-/klantprognoses
Prognoses van uw klanten of uw verkoopteam worden vaak opzettelijk overschat om de levering te garanderen, als reactie op voorraadtekorten in het verleden waar ze werden achtergelaten om te drogen. Of de vraagprognoses zijn onnauwkeurig, simpelweg omdat het verkoopteam niet echt weet wat de vraag van hun klant zal zijn, maar gedwongen wordt een cijfer op te geven. Variabiliteit van de vraag is een ander feit van het leven in de toeleveringsketen, dus planningsprocessen moeten er beter rekening mee houden. Waarom zouden verkoopteams moeten vertrouwen op het voorspellen wanneer ze het bedrijf het beste van dienst kunnen zijn door te verkopen? Waarom zou je het spel spelen van het veinzen van acceptatie van klantprognoses als beide partijen weten dat het vaak niets meer is dan een WAG? Een betere manier is om de onzekerheid te accepteren en overeenstemming te bereiken over een mate van voorraadrisico die acceptabel is voor groepen artikelen. Zodra het voorraadrisico is overeengekomen, kunt u een nauwkeurige schatting maken van de veiligheidsvoorraad die nodig is om de variabiliteit van de vraag tegen te gaan. De vangst is buy-in, omdat u zich misschien niet superhoge serviceniveaus voor alle items kunt veroorloven. Klanten moeten bereid zijn een hogere prijs per eenheid te betalen om extreem hoge serviceniveaus te kunnen leveren. Verkopers moeten accepteren dat bepaalde artikelen meer kans hebben op nabestellingen als ze prioriteit geven aan voorraadinvesteringen in andere artikelen. Het gebruik van een consensus-veiligheidsvoorraadproces zorgt ervoor dat u op de juiste manier buffert en de juiste verwachtingen schept. Wanneer je dit doet, bevrijd je alle partijen van het voorspellingsspel waar ze in de eerste plaats niet voor waren uitgerust.

 

3. Problemen de schuld geven van slechte gegevens
"Garbage In/Garbage Out" is een veelvoorkomend excuus waarom het nu niet het juiste moment is om te investeren in planningssoftware. Het is natuurlijk waar dat als je slechte gegevens in een model invoert, je geen goede resultaten krijgt, maar hier komt het: ergens in de organisatie is iemand bezig met het plannen van de inventaris, het opstellen van een prognose en het nemen van beslissingen over wat te kopen . Doen ze dit blindelings of gebruiken ze gegevens die ze in een spreadsheet hebben verzameld om hen te helpen bij het nemen van beslissingen over voorraadplanning? Hopelijk het laatste. Combineer die interne kennis met software, het automatiseren van gegevensimport uit het ERP en het opschonen van gegevens. Eenmaal geharmoniseerd, levert uw planningssoftware voortdurend bijgewerkte, goed gestructureerde vraag- en doorlooptijdsignalen die nu effectieve vraagprognose en voorraadoptimalisatie mogelijk maken. Smart Software-medeoprichter Tom Willemain schreef in een IBF-nieuwsbrief dat "veel gegevensproblemen voortkomen uit gegevens die zijn verwaarloosd totdat een prognoseproject ze belangrijk maakte." Dus start dat prognoseproject, want stap één is ervoor zorgen dat "wat erin gaat" een ongerept, gedocumenteerd en nauwkeurig vraagsignaal is.

 

 

Vraagplanning met raamcontracten

Klant als leraar

Onze klanten zijn geweldige docenten die ons altijd hebben geholpen om de kloof te overbruggen tussen de leerboektheorie en de praktische toepassing van prognoses en vraagplanning. Ons laatste stukje scholing gaat over "algemene bestellingen" en hoe deze te verantwoorden als onderdeel van het vraagplanningsproces. 

Uitbreiding van het leerboek inventarisatietheorie

De leerboekinventarisatietheorie richt zich op de drie meest gebruikte aanvullingsbeleidslijnen: (1) Periodieke herziening order-up-to-beleid, aangeduid (T, S) in de boeken (2) Continu herzieningsbeleid met vaste bestelhoeveelheid, aangeduid (R, Q) en (3) beleid voor continue beoordeling van bestelling tot en met, aangeduid met (s, S) maar gewoonlijk "Min/Max" genoemd. Onze klanten hebben erop gewezen dat hun eigenlijke bestelproces vaak gepaard gaat met veelvuldig gebruik van "algemene bestellingen". Deze blog richt zich op het opnemen van raamcontracten in het vraagplanningsproces en beschrijft hoe de voorraaddoelen dienovereenkomstig kunnen worden aangepast.

Vraagplanning met raamcontracten is anders

Raamcontracten zijn contracten met leveranciers voor vaste aanvullingshoeveelheden die met vaste tussenpozen aankomen. U kunt bijvoorbeeld met uw leverancier overeenkomen om elke 7 dagen 20 eenheden te ontvangen via een algemene bestelling in plaats van 60 tot 90 eenheden elke 28 dagen volgens het beleid voor periodieke evaluatie. Raamcontracten contrasteren zelfs nog meer met het beleid voor continue beoordeling, waarbij zowel bestelschema's als bestelhoeveelheden willekeurig zijn. Over het algemeen is het efficiënt om flexibiliteit in te bouwen in het herbevoorradingsproces, zodat u alleen bestelt wat u nodig heeft en alleen bestelt wanneer u het nodig heeft. Volgens die norm zou Min/Max het meest logisch moeten zijn en algemeen beleid het minst logisch.

De zaak voor algemeen beleid

Hoewel efficiëntie belangrijk is, is het nooit de enige overweging. Een van onze klanten, laten we ze bedrijf X noemen, legde uit hoe aantrekkelijk algemene polissen in hun omstandigheden zijn. Bedrijf X maakt hoogwaardige onderdelen voor motorfietsen en ATV's. Ze veranderen ruw staal in coole dingen. Maar ze moeten omgaan met het staal. Staal is duur. Staal is omvangrijk en zwaar. Staal wordt niet van de ene op de andere dag op speciale bestelling gemaakt. De voorraadbeheerder van bedrijf X wil geen grote maar willekeurige bestellingen plaatsen op willekeurige tijdstippen. Hij wil niet op een berg van staal passen. Zijn leveranciers willen geen bestellingen voor willekeurige hoeveelheden op willekeurige tijdstippen ontvangen. En Bedrijf X geeft er de voorkeur aan zijn betalingen te spreiden. Het resultaat: algemene bestellingen.

De fatale fout in algemeen beleid

Voor Bedrijf X zijn raamcontracten bedoeld om de aankoop van aanvullingen gelijk te maken en om onpraktische stapels staal te voorkomen voordat ze klaar zijn voor gebruik. Maar de logica achter het voorraadbeleid voor continue beoordeling is nog steeds van toepassing. Pieken in de vraag, anders welkom, zullen optreden en kunnen leiden tot stockouts. Evenzo kunnen pauzes in de vraag een vraagoverschot creëren. Naarmate de tijd verstrijkt, wordt het duidelijk dat een algemeen beleid een fatale fout heeft: alleen als de raamorders exact overeenkomen met de gemiddelde vraag, kunnen ze op hol geslagen voorraad in beide richtingen, omhoog of omlaag, vermijden. In de praktijk zal het onmogelijk zijn om de gemiddelde vraag exact te matchen. Bovendien is de gemiddelde vraag een bewegend doel en kan deze stijgen of dalen.

Raamcontracten opnemen bij vraagplanning 

Een algemeen beleid heeft wel voordelen, maar rigiditeit is de achilleshiel. Vraagplanners zullen vaak improviseren door toekomstige bestellingen aan te passen om veranderingen in de vraag aan te kunnen, maar dit is niet schaalbaar voor duizenden artikelen. Om het voorraadaanvulbeleid robuust te maken tegen willekeur in de vraag, stellen we een hybride beleid voor dat begint met algemene bestellingen, maar de flexibiliteit behoudt om automatisch (niet handmatig) extra voorraad te bestellen wanneer dat nodig is. Door de algemene polis aan te vullen met een Min/Max back-up is het mogelijk om aanpassingen te doen zonder handmatige tussenkomst. Deze combinatie zal enkele van de voordelen van raamcontracten vastleggen, terwijl de klantenservice wordt beschermd en op hol geslagen voorraad wordt vermeden.

Het ontwerpen van een vraagplanningsproces dat rekening houdt met raamcontracten, vereist de keuze uit vier besturingsparameters. Twee parameters zijn de vaste omvang en vaste timing van de algemene polis. Twee andere zijn de waarden van Min en Max. Hierdoor wordt de voorraadbeheerder geconfronteerd met een vierdimensionaal optimalisatieprobleem. Geavanceerde voorraadoptimalisatiesoftware maakt het mogelijk om keuzes voor de waarden van de vier parameters te evalueren en om onderhandelingen met leveranciers te ondersteunen bij het opstellen van raamcontracten.

 

 

Voorraad optimaliseren rond de minimale bestelhoeveelheden van leveranciers

Onlangs had ik een interessant gesprek met een voorraadbeheerder en de VP Financiën. We bespraken de voordelen van het automatisch optimaliseren van zowel bestelpunten als bestelhoeveelheden. De VP Finance was bezorgd dat ze, gezien hun grote leverancier die minimale bestelhoeveelheden vereiste, er niet van zouden kunnen profiteren. Hij zei dat zijn leveranciers alle macht in handen hadden, hem dwongen enorme minimale bestelhoeveelheden te accepteren en zijn handen vastbinden. Hoewel hij zich hier rot over voelde, zag hij een zilveren randje: hij hoefde geen planning te maken. Hij zou een grote voorraadinvestering accepteren, maar zijn klantenserviceniveau zou uitzonderlijk zijn. Misschien werd aangenomen dat de grote voorraadinvestering de kosten van het zakendoen waren.

Ik duwde terug en wees erop dat hij niet zo machteloos was als hij zich voelde. Hij had nog steeds controle over de andere helft van het inkoopproces: hoewel hij niet kon bepalen hoeveel hij moest bestellen, kon hij wel bepalen wanneer hij moest bestellen door het bestelpunt aan te passen. Met andere woorden, er is altijd ruimte voor zorgvuldige kwantitatieve analyse in voorraadbeheer, zelfs als u één hand op de rug hebt gebonden.

Een voorbeeld

Om wat cijfers achter mijn argument te plaatsen, heb ik een scenario gemaakt en het vervolgens geanalyseerd met behulp van onze methodologie om te laten zien hoe consequent het kan zijn om software voor voorraadoptimalisatie te gebruiken, zelfs in krappe situaties. In dit scenario is de vraag naar artikelen gemiddeld 2,2 eenheden per dag, maar deze varieert aanzienlijk per dag van de week. Laten we zeggen dat de denkbeeldige leverancier aandringt op een minimale bestelhoeveelheid van 500 eenheden (ver buiten proportie met de vraag) en de aanvullingsorders in drie dagen of tien dagen in gelijke verhoudingen uitvoert (vrij inconsistent). Laten we, om de schuld te verspreiden, ook aannemen dat de denkbeeldige klant van de denkbeeldige leverancier een dwaze regel gebruikt dat het bestelpunt 10% van de minimale bestelhoeveelheid moet zijn. (Waarom deze regel? Te veel bedrijven gebruiken eenvoudige/simplistische vuistregels in plaats van een goede analyse.)

We hebben dus een basisscenario waarin de bestelhoeveelheid 500 eenheden is en het bestelpunt 50 eenheden is. In dit geval is het opvulpercentage 100%, maar het gemiddelde aantal beschikbare eenheden is maar liefst 330. Als de klant het bestelpunt eenvoudigweg zou verlagen van 50 naar 15, zou het opvulpercentage nog steeds 99,5% zijn, maar de gemiddelde voorraad bij de hand zou dalen met 11% tot 295 eenheden. Met de ene hand die niet op zijn rug gebonden was, kon de voorraadbeheerder zijn voorraadinvestering met meer dan 10% verminderen, wat een merkbare overwinning zou zijn.

Overigens, als de minimale bestelhoeveelheid zou worden afgeschaft, zou de klant vrij zijn om tot een nieuwe en veel betere oplossing te komen. Door de bestelhoeveelheid in te stellen op 45 en het bestelpunt op 25 zou een opvulpercentage van 99% worden bereikt ten koste van een dagelijks voorraadniveau van slechts 35 eenheden: bijna een 90%-reductie in voorraadinvestering: een belangrijke verbetering ten opzichte van de status-quo.

naschrift

Deze berekeningen zijn mogelijk met behulp van onze software, die de anders onbekende relaties tussen de ontwerpkeuzes van het voorraadsysteem (bijv. bestelhoeveelheid en bestelpunt) en belangrijke prestatie-indicatoren (bijv. gemiddelde beschikbare eenheden en opvulpercentage) zichtbaar kan maken. Gewapend met dit vermogen om deze berekeningen uit te voeren, kunnen nu alternatieve afspraken met de leverancier worden overwogen. Wat als de leverancier, in ruil voor het betalen van een hogere prijs per eenheid, bijvoorbeeld instemt met een lagere MOQ. Door de software te gebruiken om een analyse uit te voeren van de belangrijkste prestatie-indicatoren met behulp van de "wat als"-kosten en MOQ's, zouden de kosten per eenheid en MOQ worden onthuld die nodig zouden zijn om een meer winstgevende deal te ontwikkelen. Eenmaal geïdentificeerd, hebben alle partijen er baat bij. De leverancier genereert nu een betere marge op de verkoop van zijn producten en de koper houdt aanzienlijk minder voorraad aan, wat leidt tot een verlaging van de holdingkosten die de toegevoegde kosten per eenheid in de schaduw stelt. Iedereen wint.