Aanbevolen bron: 'Practical Time Series Forecasting: A Hands-On Guide', door Galit Schmueli

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Een leesbaar, goed georganiseerd leerboek kan van onschatbare waarde zijn om "bedrijfsvoorspellers in opleiding te helpen de basisprincipes van tijdreeksvoorspelling te begrijpen", zoals Tom Willemain opmerkt in de conclusie van deze recensie, oorspronkelijk gepubliceerd in Vooruitziendheid: The International Journal of Applied Forecasting. De review is voornamelijk geschreven voor een academisch publiek, maar dient ook voor onervaren vraagplanningprofessionals door hen te wijzen op een diepgaande bron.

Dit nette boekje heeft tot doel "de lezer kennis te laten maken met kwantitatieve prognoses van tijdreeksen op een praktische, praktische manier." Voor een bepaald soort lezer zal het ongetwijfeld lukken, en wel op een stijlvolle manier.

De auteur, dr. Galit Shmueli, is de door SRITNE voorgezeten hoogleraar data-analyse en universitair hoofddocent statistiek en informatiesystemen aan de Indian School of Business, Hyderabad. Ze is auteur of co-auteur van verschillende andere boeken over toegepaste statistiek en bedrijfsanalyse.

Het boek is bedoeld als tekst voor een cursus "mini-semester" voor afgestudeerde of niet-gegradueerde studenten. Ik denk dat het te ver gaat om te geloven dat er hier genoeg technisch materiaal is om als basis te dienen voor een masteropleiding, maar ik zie dat het goed werkt voor studenten in industriële techniek of management die een eerdere cursus statistiek hebben gehad (en daarom zullen inderdaad kunnen "herinneren dat een 95%-voorspellingsinterval voor normaal verdeelde fouten ..." is).

Er zijn oefeningen aan het einde van het hoofdstuk van de juiste omvang en zelfs opstellingen voor drie real-world semesterprojecten, zodat instructeurs het boek kunnen gebruiken zoals de auteur het voor ogen had. Het boek illustreert de punten met behulp van XLMiner, een Excel-invoegtoepassing, en studenten kunnen de gratis demoversie gebruiken voor bijna alle oefeningen. Tekstdatasets zijn beschikbaar op de website van het boek, die ook een gratis 'dashboard'-applicatie voor tijdreeksanalyse biedt. De auteur merkt op dat andere software kan worden gebruikt in plaats van XLMiner en vermeldt de prognosebibliotheek van Minitab, JMP en Rob Hyndman in R.

Tijdens het lezen van dit boek was ik aangenaam verrast door de helderheid ervan. Nadat ik onlangs tijd had besteed aan het corrigeren van het technische proza van twee verder goede afgestudeerde studenten, vond ik het schrijven in dit boek een verfrissend contrast, waardoor technische concepten begrijpelijk werden.

Een ander voordeel van dit boek is de selectie van onderwerpen. De technische zijn redelijk standaard (afvlakkingsmethoden, regressie met behulp van polynoomtrends en dummy-variabelen), maar variëren ook een beetje in de richting van meer exotisch (logistische regressie, neurale netwerken, een beetje ARIMA). Indrukwekkender is de opname van wat "meta-onderwerpen" kunnen worden genoemd die relevant zijn voor prognoses: prestatiebeoordeling, een overzicht van alternatieve technische benaderingen en een over het prognoseproces, van het definiëren van doelen tot manieren om rapporten anders af te stemmen op management- en technische publiek. Dit is het soort voorspellende wijsheid die we vinden Chris Chatfields boek (2004), hoewel iets minder scherp gepresenteerd en met minder wiskundige uiteenzetting. Meestal raad ik Chatfields inleidende boek aan voor meer technische lezers die geïnteresseerd zijn in tijdreeksen; Ik zou het boek van Shmueli aanbevelen voor een meer algemeen publiek.

Geen beoordeling is compleet zonder haarkloverijen. Hier zijn er een paar - te weinig om mijn zeer positieve kijk op dit indrukwekkende boekje ongedaan te maken:

• De tekst is een goed argument voor 'goed opgemaakte en gemakkelijk leesbare' grafieken (p. 179). Maar ik vond veel van de schermafbeeldingen slecht afgedrukt en moeilijk te zien. Het boek is overigens zo visueel aantrekkelijk dat deze gebreken erg vreemd lijken. Het maakt met groot effect gebruik van luxueuze hoeveelheden witruimte en grillige marginale kunst, waardoor een zeer "licht" gevoel ontstaat dat het begrip zeker moet helpen.

• De auteur beweert (p. 115) dat afvlakkingsmethoden (bijv. voortschrijdende gemiddelden, exponentiële afvlakking) niet volledig geautomatiseerd kunnen worden omdat "de gebruiker afvlakkingsconstanten moet specificeren". Dit is natuurlijk niet zo, aangezien er verschillende softwarepakketten zijn die dit doen, en de tekst spreekt zichzelf later op dit punt tegen op pagina 127.

• De verder goede bespreking van autocorrelatie is misleidend wanneer wordt beweerd (p. 88) dat negatieve lag-1 autocorrelatie betekent dat "hoge waarden onmiddellijk worden gevolgd door lage waarden en vice versa." Nou ja, meestal, maar niet altijd.

Toen ik dit boek uit had, besefte ik meteen dat er buiten de klas nog een andere doelgroep is. Mijn bedrijf geeft vaak trainingssessies over het gebruik van onze software, inclusief algemene achtergrondinformatie over prognosemethoden en -processen. Als we het materiaal op XLMiner zouden kunnen uitknippen, en zelfs als we dat niet zouden kunnen, zou deze tekst een prachtige "achterwege" zijn om zakelijke voorspellers in opleiding te helpen de basisprincipes van tijdreeksprognoses te begrijpen. Het boek is zo goed geschreven, goed georganiseerd en goed ontworpen dat het zelfs gelezen zou kunnen worden. We kunnen het zeker gebruiken om onze nieuwe programmeurs te helpen de applicaties die ze ontwikkelen te begrijpen. En dit boek zou zelfs kunnen dienen als schuldig leesvoer voor een afgestudeerde student die echt wil 'snappen' wat er gaande is in Box, Jenkins en Reinsel (2008).

Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

Dagelijkse vraagscenario's

Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

De methoden voor voorspelling

De methoden voor voorspelling

Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all-proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd.

recente berichten

  • Gebruikmaken van Epicor Kinetic Planning BOM's met slimme IP&O om nauwkeurig HD te voorspellenGebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses
    In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt. […]
  • Twee multi-echelon inventarisoptimalisatie Neuraal netwerk AIDe volgende grens in Supply Chain Analytics
    Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor op het gebied van supply chain-analyse is. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong. […]
  • SMART sluit zich aan bij EPICOREpicor verwerft slimme software voor AI-aangedreven technologieën voor voorraadplanning en -optimalisatie
    De overname brengt twee bedrijven samen die nauw op elkaar zijn afgestemd om organisaties te helpen op het juiste moment tot de juiste inzichten te komen en actie te ondernemen om de bedrijfsprestaties te maximaliseren. . […]
  • Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatieOnzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie
    In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van 'probabilistische voorraadoptimalisatie', richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen. […]
  • Dagelijkse vraagscenario's Smart 2Dagelijkse vraagscenario's
    In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebbenWaarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben
      MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen. In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen. […]
    • Vraag naar reserveonderdelen voorspellen-een-ander-perspectief-voor-planning-service-onderdelenDe voorspelling is belangrijk, maar misschien niet zoals u denkt
      Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja. […]
    • Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraadWaarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
      Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien. […]
    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]