Aanbevolen bron: 'Practical Time Series Forecasting: A Hands-On Guide', door Galit Schmueli

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Een leesbaar, goed georganiseerd leerboek kan van onschatbare waarde zijn om "bedrijfsvoorspellers in opleiding te helpen de basisprincipes van tijdreeksvoorspelling te begrijpen", zoals Tom Willemain opmerkt in de conclusie van deze recensie, oorspronkelijk gepubliceerd in Vooruitziendheid: The International Journal of Applied Forecasting. De review is voornamelijk geschreven voor een academisch publiek, maar dient ook voor onervaren vraagplanningprofessionals door hen te wijzen op een diepgaande bron.

Dit nette boekje heeft tot doel "de lezer kennis te laten maken met kwantitatieve prognoses van tijdreeksen op een praktische, praktische manier." Voor een bepaald soort lezer zal het ongetwijfeld lukken, en wel op een stijlvolle manier.

De auteur, dr. Galit Shmueli, is de door SRITNE voorgezeten hoogleraar data-analyse en universitair hoofddocent statistiek en informatiesystemen aan de Indian School of Business, Hyderabad. Ze is auteur of co-auteur van verschillende andere boeken over toegepaste statistiek en bedrijfsanalyse.

Het boek is bedoeld als tekst voor een cursus "mini-semester" voor afgestudeerde of niet-gegradueerde studenten. Ik denk dat het te ver gaat om te geloven dat er hier genoeg technisch materiaal is om als basis te dienen voor een masteropleiding, maar ik zie dat het goed werkt voor studenten in industriële techniek of management die een eerdere cursus statistiek hebben gehad (en daarom zullen inderdaad kunnen "herinneren dat een 95%-voorspellingsinterval voor normaal verdeelde fouten ..." is).

Er zijn oefeningen aan het einde van het hoofdstuk van de juiste omvang en zelfs opstellingen voor drie real-world semesterprojecten, zodat instructeurs het boek kunnen gebruiken zoals de auteur het voor ogen had. Het boek illustreert de punten met behulp van XLMiner, een Excel-invoegtoepassing, en studenten kunnen de gratis demoversie gebruiken voor bijna alle oefeningen. Tekstdatasets zijn beschikbaar op de website van het boek, die ook een gratis 'dashboard'-applicatie voor tijdreeksanalyse biedt. De auteur merkt op dat andere software kan worden gebruikt in plaats van XLMiner en vermeldt de prognosebibliotheek van Minitab, JMP en Rob Hyndman in R.

Tijdens het lezen van dit boek was ik aangenaam verrast door de helderheid ervan. Nadat ik onlangs tijd had besteed aan het corrigeren van het technische proza van twee verder goede afgestudeerde studenten, vond ik het schrijven in dit boek een verfrissend contrast, waardoor technische concepten begrijpelijk werden.

Een ander voordeel van dit boek is de selectie van onderwerpen. De technische zijn redelijk standaard (afvlakkingsmethoden, regressie met behulp van polynoomtrends en dummy-variabelen), maar variëren ook een beetje in de richting van meer exotisch (logistische regressie, neurale netwerken, een beetje ARIMA). Indrukwekkender is de opname van wat "meta-onderwerpen" kunnen worden genoemd die relevant zijn voor prognoses: prestatiebeoordeling, een overzicht van alternatieve technische benaderingen en een over het prognoseproces, van het definiëren van doelen tot manieren om rapporten anders af te stemmen op management- en technische publiek. Dit is het soort voorspellende wijsheid die we vinden Chris Chatfields boek (2004), hoewel iets minder scherp gepresenteerd en met minder wiskundige uiteenzetting. Meestal raad ik Chatfields inleidende boek aan voor meer technische lezers die geïnteresseerd zijn in tijdreeksen; Ik zou het boek van Shmueli aanbevelen voor een meer algemeen publiek.

Geen beoordeling is compleet zonder haarkloverijen. Hier zijn er een paar - te weinig om mijn zeer positieve kijk op dit indrukwekkende boekje ongedaan te maken:

• De tekst is een goed argument voor 'goed opgemaakte en gemakkelijk leesbare' grafieken (p. 179). Maar ik vond veel van de schermafbeeldingen slecht afgedrukt en moeilijk te zien. Het boek is overigens zo visueel aantrekkelijk dat deze gebreken erg vreemd lijken. Het maakt met groot effect gebruik van luxueuze hoeveelheden witruimte en grillige marginale kunst, waardoor een zeer "licht" gevoel ontstaat dat het begrip zeker moet helpen.

• De auteur beweert (p. 115) dat afvlakkingsmethoden (bijv. voortschrijdende gemiddelden, exponentiële afvlakking) niet volledig geautomatiseerd kunnen worden omdat "de gebruiker afvlakkingsconstanten moet specificeren". Dit is natuurlijk niet zo, aangezien er verschillende softwarepakketten zijn die dit doen, en de tekst spreekt zichzelf later op dit punt tegen op pagina 127.

• De verder goede bespreking van autocorrelatie is misleidend wanneer wordt beweerd (p. 88) dat negatieve lag-1 autocorrelatie betekent dat "hoge waarden onmiddellijk worden gevolgd door lage waarden en vice versa." Nou ja, meestal, maar niet altijd.

Toen ik dit boek uit had, besefte ik meteen dat er buiten de klas nog een andere doelgroep is. Mijn bedrijf geeft vaak trainingssessies over het gebruik van onze software, inclusief algemene achtergrondinformatie over prognosemethoden en -processen. Als we het materiaal op XLMiner zouden kunnen uitknippen, en zelfs als we dat niet zouden kunnen, zou deze tekst een prachtige "achterwege" zijn om zakelijke voorspellers in opleiding te helpen de basisprincipes van tijdreeksprognoses te begrijpen. Het boek is zo goed geschreven, goed georganiseerd en goed ontworpen dat het zelfs gelezen zou kunnen worden. We kunnen het zeker gebruiken om onze nieuwe programmeurs te helpen de applicaties die ze ontwikkelen te begrijpen. En dit boek zou zelfs kunnen dienen als schuldig leesvoer voor een afgestudeerde student die echt wil 'snappen' wat er gaande is in Box, Jenkins en Reinsel (2008).

Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Correlation vs Causation: Is This Relevant to Your Job?

Correlation vs Causation: Is This Relevant to Your Job?

Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct.

Soorten prognoseproblemen die we helpen oplossen

Soorten prognoseproblemen die we helpen oplossen

Het genereren van nauwkeurige statistische prognoses is geen gemakkelijke taak. Planners moeten historische gegevens continu up-to-date houden, een database met voorspellingsmodellen bouwen en beheren, weten welke voorspellingsmethoden ze moeten gebruiken, bijhouden of voorspellingsonderdrukkingen worden overschreven en rapporteren over de nauwkeurigheid van de voorspelling. Hier zijn voorbeelden van prognoseproblemen die SmartForecasts kan oplossen, samen met de soorten bedrijfsgegevens die representatief zijn voor elk.

Drie manieren om de nauwkeurigheid van prognoses te schatten

Drie manieren om de nauwkeurigheid van prognoses te schatten

Nauwkeurigheid van prognoses is een belangrijke maatstaf om de kwaliteit van uw vraagplanningsproces te beoordelen. Als u eenmaal prognoses heeft, zijn er verschillende manieren om hun nauwkeurigheid samen te vatten, meestal aangeduid met obscure drie- of vierletterige acroniemen zoals MAPE, RMSE en MAE.

recente berichten

  • Electricity problems. Repairman is working indoors with Software for spare partsElectric Utilities’ Problems with Spare Parts
    Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
  • Correlation vs Causation Relevant to your demand planning businessCorrelation vs Causation: Is This Relevant to Your Job?
    Outside of work, you may have heard the famous dictum “Correlation is not causation.” It may sound like a piece of theoretical fluff that, though involved in a recent Noble Prize in economics, isn’t relevant to your work as a demand planner. Is so, you may be only partially correct. […]
  • Downtown Miami skyline panorama and with software guided lights on at duskSmart Software Customer, Arizona Public Service to Present at USMA 2023
    Smart Software CEO and APS Inventory & Logistics Manager to present USMA 2023 Session on APS supply chain transformation project and the role of inventory optimization technology in their new process. […]
  • What data is needed to support Demand Planning Software ImplementationsWhat data is needed to support Demand Planning Software Implementations
    We recently met with the IT team at one of our customers to discuss data requirements and installation of our API based integration that would pull data from their on-premises installation of their ERP system. The IT manager and analyst both expressed significant concern about providing this data and seriously questioned why it needed to be provided at all. […]
  • Ernstige zakenman die hard nadenkt over probleemoplossing die op kantoor werkt en zich richt op het voorspellen van financiële tarieven.Soorten prognoseproblemen die we helpen oplossen
    Het genereren van nauwkeurige statistische prognoses is geen gemakkelijke taak. Planners moeten historische gegevens continu up-to-date houden, een database met voorspellingsmodellen bouwen en beheren, weten welke voorspellingsmethoden ze moeten gebruiken, bijhouden of voorspellingsonderdrukkingen worden overschreven en rapporteren over de nauwkeurigheid van de voorspelling. Hier zijn voorbeelden van prognoseproblemen die SmartForecasts kan oplossen, samen met de soorten bedrijfsgegevens die representatief zijn voor elk. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Electricity problems. Repairman is working indoors with Software for spare partsElectric Utilities’ Problems with Spare Parts
      Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility. […]
    • Werknemer onderhoud industriële machine robotachtige reserveonderdelen voorspellenHoe u reserveonderdelen kunt voorspellen die weinig worden gebruikt
      Wat doet u wanneer u een periodiek gevraagd artikel, zoals een reserveonderdeel, voorspelt met een gemiddelde vraag van minder dan één eenheid per maand? Meestal is de vraag nul, maar het onderdeel is zakelijk significant; het kan niet worden genegeerd en moet worden voorspeld om er zeker van te zijn dat u voldoende voorraad heeft. […]
    • Reserveonderdelen, vervangende onderdelen, draaibare onderdelen en aftermarket-onderdelenReserveonderdelen, vervangende onderdelen, draaibare onderdelen en aftermarket-onderdelen
      Degenen die nieuw zijn in het onderdelenplanningsspel worden vaak in de war gebracht door de vele variaties in de namen van onderdelen. Deze blog wijst op onderscheidingen die wel of niet van operationele betekenis zijn voor iemand die een vloot reserveonderdelen beheert en hoe die verschillen van invloed zijn op de voorraadplanning. […]
    • Zakenman en zakenvrouw lezen en analyseren van spreadsheetDe top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen
      We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden). […]