De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

Spreadsheets zijn weliswaar flexibel vanwege hun oneindige aanpasbaarheid, maar zijn in wezen handmatig van aard en vereisen aanzienlijk gegevensbeheer, menselijke inbreng en toezicht. Dit vergroot het risico op fouten, van eenvoudige fouten bij het invoeren van gegevens tot complexe formulefouten, die trapsgewijze effecten veroorzaken die de voorspellingen negatief beïnvloeden. Bovendien zijn spreadsheetgebaseerde processen, ondanks de vooruitgang op het gebied van samenwerkingsfuncties die meerdere gebruikers in staat stellen om met een gemeenschappelijk blad te communiceren, vaak in silo's ondergebracht. De houder van het spreadsheet houdt de gegevens vast. Wanneer dit gebeurt, ontstaan er veel bronnen van datawaarheid. Zonder het vertrouwen van een overeengekomen, zuivere en automatisch bijgewerkte gegevensbron beschikken organisaties niet over de noodzakelijke basis waarop voorspellende modellen, prognoses en analyses kunnen worden gebouwd.

Geavanceerde planningssystemen zoals Smart IP&O zijn daarentegen ontworpen om deze beperkingen te overwinnen. Dergelijke systemen zijn gebouwd om automatisch gegevens op te nemen via API of bestanden van ERP- en EAM-systemen, die gegevens te transformeren met behulp van ingebouwde ETL-tools en grote hoeveelheden gegevens efficiënt te verwerken. Hierdoor kunnen bedrijven complexe inventarisatie- en prognosetaken met grotere nauwkeurigheid en minder handmatige inspanning beheren, omdat de gegevensverzameling, aggregatie en transformatie al zijn voltooid. De overstap naar geavanceerde planningssystemen is om verschillende redenen essentieel voor het optimaliseren van resources.

Spreadsheets hebben ook een schaalprobleem. Hoe groter het bedrijf groeit, hoe groter het aantal spreadsheets, werkmappen en formules wordt. Het resultaat is een strak verweven en rigide geheel van onderlinge afhankelijkheden die log en inefficiënt worden. Gebruikers zullen moeite hebben met het omgaan met de toegenomen belasting en complexiteit, met trage verwerkingstijden en het onvermogen om grote datasets te beheren, en zullen te maken krijgen met uitdagingen bij het samenwerken tussen teams en afdelingen.

Aan de andere kant zijn geavanceerde planningssystemen voor voorraadoptimalisatie, vraagplanning en voorraadbeheer schaalbaar, ontworpen om met het bedrijf mee te groeien en zich aan te passen aan de veranderende behoeften. Deze schaalbaarheid zorgt ervoor dat bedrijven hun voorraad en prognoses effectief kunnen blijven beheren, ongeacht de omvang of complexiteit van hun activiteiten. Door over te stappen op systemen als Smart IP&O kunnen bedrijven niet alleen de nauwkeurigheid van hun voorraadbeheer en prognoses verbeteren, maar ook een concurrentievoordeel op de markt verwerven door beter te kunnen reageren op veranderingen in de vraag en efficiënter te kunnen opereren.

Voordelen van inspringen: Een elektriciteitsbedrijf had moeite om de beschikbaarheid van serviceonderdelen op peil te houden zonder een overschot aan voorraden te creëren voor meer dan 250.000 onderdelen in een divers netwerk van energieopwekkings- en distributiefaciliteiten. Het verving hun twintig jaar oude planningsproces, dat intensief gebruik maakte van spreadsheets, met Smart IP&O en een realtime integratie met hun EAM-systeem. Vóór Smart konden ze de Min/Max- en Veiligheidsvoorraadniveaus slechts zelden wijzigen. Als ze dat deden, was dat vrijwel altijd omdat er een probleem was opgetreden dat aanleiding gaf tot de beoordeling. De methoden die werden gebruikt om de kousparameters te wijzigen, waren sterk afhankelijk van het onderbuikgevoel en de gemiddelden van het historische gebruik. Het hulpprogramma maakte gebruik van de wat-als-scenario's van Smart om digitale tweelingen van alternatief voorraadbeleid te creëren en simuleerde hoe elk scenario zou presteren op belangrijke prestatie-indicatoren zoals voorraadwaarde, serviceniveaus, opvullingspercentages en tekortkosten. De software identificeerde gerichte Min/Max-verhogingen en -verlagingen die in hun EAM-systeem werden geïmplementeerd, waardoor de aanvulling van hun reserveonderdelen optimaal werd gestimuleerd. Het resultaat: een aanzienlijke voorraadreductie van $9 miljoen, waardoor contant geld en waardevolle magazijnruimte vrijkwamen, terwijl de beoogde serviceniveaus van 99%+ behouden bleven.

Prognosenauwkeurigheid beheren: Voorspellingsfouten zijn een onvermijdelijk onderdeel van voorraadbeheer, maar de meeste bedrijven houden dit niet bij. Zoals Peter Drucker zei: “Je kunt niet verbeteren wat je niet meet.” Een mondiaal hightech productiebedrijf dat een op spreadsheets gebaseerd voorspellingsproces gebruikte, moest handmatig zijn basisvoorspellingen opstellen en de nauwkeurigheid van de prognoses rapporteren. Gezien de werkdruk en de geïsoleerde processen van de planners werkten ze hun rapporten niet vaak bij, en als ze dat wel deden, moesten de resultaten handmatig worden gedistribueerd. Het bedrijf beschikte niet over een manier om te weten hoe nauwkeurig een bepaalde voorspelling was en kon de werkelijke fouten niet met enig vertrouwen per groep of onderdeel vermelden. Ze wisten ook niet of hun voorspellingen beter presteerden dan een controlemethode. Nadat Smart IP&O live ging, automatiseerde de module Demand Planning dit voor hen. Smart Demand Planner voorspelt nu automatisch de vraag elke planningscyclus opnieuw met behulp van ML-methoden en slaat nauwkeurigheidsrapporten op voor elke Part X-locatie. Alle aanpassingen die op de prognoses worden toegepast, kunnen nu automatisch worden vergeleken met de basislijn om de toegevoegde waarde van de prognose te meten – dwz of de extra inspanning om die wijzigingen door te voeren de nauwkeurigheid heeft verbeterd. Nu de mogelijkheid bestaat om de statistische basisprognoses te automatiseren en nauwkeurigheidsrapporten te produceren, beschikt dit bedrijf over een solide basis om het voorspellingsproces en de daaruit voortvloeiende voorspellingsnauwkeurigheid te verbeteren.

Doe het goed en houd het goed:  Een andere klant in de aftermarket-onderdelensector gebruikt de prognoseoplossingen van Smart sinds 2005 – bijna 20 jaar! Ze werden geconfronteerd met uitdagingen bij het voorspellen van de vraag naar onderdelen die met tussenpozen zouden worden verkocht ter ondersteuning van hun auto-aftermarket-activiteiten. Door hun op spreadsheets gebaseerde aanpak en handmatige uploads naar SAP te vervangen door statistische prognoses van de vraag en de veiligheidsvoorraad van SmartForecasts, konden ze het aantal backorders en omzetverlies aanzienlijk terugdringen, waarbij de opvullingspercentages binnen slechts drie maanden verbeterden van 93% naar 96%. De sleutel tot hun succes was het gebruik van Smart's gepatenteerde methode voor het voorspellen van de intermitterende vraag. De “Smart-Willemain” bootstrap-methode genereerde nauwkeurige schattingen van de cumulatieve vraag gedurende de doorlooptijd, waardoor een betere zichtbaarheid van de mogelijke vraag werd verzekerd.

Prognoses koppelen aan het voorraadplan: Geavanceerde planningssystemen ondersteunen op prognoses gebaseerd voorraadbeheer, wat een proactieve aanpak is die vertrouwt op vraagprognoses en simulaties om mogelijke uitkomsten en de bijbehorende kansen te voorspellen. Deze gegevens worden gebruikt om de optimale voorraadniveaus te bepalen. Op scenario's gebaseerde of probabilistische prognoses staan in contrast met de meer reactieve aard van op spreadsheets gebaseerde methoden. Een oude klant in de stoffensector, die voorheen te maken kreeg met overvoorraden en voorraadtekorten als gevolg van de intermitterende vraag naar duizenden SKU's. Ze konden op geen enkele manier weten wat de risico's van hun stock-out waren en konden dus niet proactief het beleid aanpassen om de risico's te beperken, anders dan het maken van zeer ruwe aannames die de neiging hadden om grove overvoorraden te hebben. Ze adopteerden de software voor vraag- en voorraadplanning van Smart Software om simulaties van de vraag te genereren die de optimale minimale voorraadwaarden en bestelhoeveelheden identificeerden, waardoor de productbeschikbaarheid voor onmiddellijke verzending behouden bleef, wat de voordelen van een op prognoses gebaseerde benadering van voorraadbeheer benadrukte.

Betere samenwerking:  Het delen van prognoses met belangrijke leveranciers helpt de levering te garanderen. Kratos Space, onderdeel van Kratos Defense & Security Solutions, Inc., maakte gebruik van slimme voorspellingen om hun contractfabrikanten beter inzicht te geven in de toekomstige vraag. Ze gebruikten de prognoses om toezeggingen te doen over toekomstige aankopen, waardoor de CM de materiaalkosten en doorlooptijden voor engineered-to-order-systemen kon verlagen. Deze samenwerking laat zien hoe geavanceerde voorspellingstechnieken kunnen leiden tot aanzienlijke samenwerking in de supply chain die voor beide partijen efficiëntie en kostenbesparingen oplevert.

 

Vind uw plek op de voorraadafwegingscurve

Deze videoblog bevat essentiële inzichten voor degenen die werken met de complexiteit van voorraadbeheer. De sessie richt zich op het vinden van het juiste evenwicht binnen de voorraadafwegingscurve en nodigt kijkers uit om het diepgewortelde belang van dit evenwicht te begrijpen. Als u ooit aandelen heeft moeten beheren, weet u dat dit een beetje touwtrekken is. Aan de ene kant streeft u naar minder voorraad, wat geweldig is om geld te besparen, maar uw klanten ook gerust kan stellen. Aan de andere kant overweegt u meer voorraad, wat uw klanten tevreden houdt, maar een last voor uw budget kan zijn. Om een slimme keuze te kunnen maken in dit aanhoudende getouwtrek, moet u begrijpen waar uw huidige voorraadbeslissingen u op deze afwegingscurve plaatsen. Ben je op een punt waar je de druk aankunt, of moet je verder schuifelen naar een comfortabelere plek?

Als u deze vraag niet kunt beantwoorden, betekent dit dat u nog steeds vertrouwt op verouderde methoden, waardoor u het risico loopt op overtollige voorraad of onvervulde klantbehoeften. Bekijk de video zodat u precies kunt zien waar u zich op deze curve bevindt en beter begrijpt of u op uw plaats wilt blijven of naar een meer optimale positie wilt gaan.

 

En als u besluit te verhuizen, hebben wij de tools om u te begeleiden. Dankzij de geavanceerde 'wat-als'-analyse van Smart IP&O kunnen bedrijven nauwkeurig de impact evalueren van verschillende voorraadstrategieën, zoals aanpassingen aan de veiligheidsvoorraden of veranderingen in bestelpunten, op hun evenwicht tussen opslagkosten en serviceniveaus. Door vraagscenario's en voorraadbeleid te simuleren, biedt Smart IP&O een duidelijke visualisatie van potentiële financiële resultaten en implicaties voor het serviceniveau, waardoor datagestuurde strategische beslissingen mogelijk worden. Deze krachtige tool zorgt ervoor dat bedrijven een optimaal evenwicht kunnen bereiken, waardoor overtollige voorraad en de daarmee samenhangende kosten worden geminimaliseerd en tegelijkertijd een hoog serviceniveau wordt gehandhaafd om efficiënt aan de vraag van de klant te voldoen.  

 

 

Waarom MRO-bedrijven aanvullende software voor serviceonderdelenplanning en inventarisatie nodig hebben

MRO-organisaties bestaan in een breed scala van industrieën, waaronder openbaar vervoer, elektriciteitsbedrijven, afvalwater, waterkracht, luchtvaart en mijnbouw. Om hun werk gedaan te krijgen, gebruiken MRO-professionals Enterprise Asset Management (EAM) en Enterprise Resource Planning (ERP)-systemen. Deze systemen zijn ontworpen om veel taken uit te voeren. Gezien hun kenmerken, kosten en uitgebreide implementatievereisten wordt aangenomen dat EAM- en ERP-systemen het allemaal kunnen.

Tijdens een recent evenement van de Maximo Utilities Working Group verklaarden verschillende potentiële klanten bijvoorbeeld dat “onze EAM dat zal doen” toen hen werd gevraagd naar de vereisten voor het voorspellen van het gebruik, het verrekenen van leveringsplannen en het optimaliseren van het voorraadbeleid. Ze waren verrast toen ze hoorden dat dit niet het geval was en wilden meer weten.

In dit bericht vatten we de behoefte aan aanvullende software samen die zich richt op gespecialiseerde analyses voor voorraadoptimalisatie, prognoses en planning van serviceonderdelen.   

EAM-systemen

EAM-systemen kunnen geen prognoses van toekomstig gebruik verwerken. Deze systemen zijn eenvoudigweg niet ontworpen om leveringsplanning uit te voeren en veel systemen hebben niet eens een plek om prognoses vast te houden. Dus wanneer een MRO-bedrijf bekende vereisten voor geplande productie- of investeringsprojecten moet verrekenen, is een add-on-applicatie zoals Smart IP&O is nodig.

Voorraadoptimalisatiesoftware met functies die de planning ondersteunen van een bekende toekomstige vraag, gebruikt projectgebaseerde gegevens die niet in het EAM-systeem worden bijgehouden (inclusief de startdatums van het project, de duur en wanneer elk onderdeel naar verwachting nodig zal zijn) en berekent een prognose per periode over elke planningshorizon. Deze “geplande” voorspelling kan worden geprojecteerd naast statistische voorspellingen van de “ongeplande” vraag die voortkomt uit normale slijtage. Op dat moment kan software voor onderdelenplanning het aanbod salderen en de kloof tussen vraag en aanbod identificeren. Dit zorgt ervoor dat deze hiaten niet onopgemerkt blijven en resulteren in tekorten die anders de voltooiing van de projecten zouden vertragen. Het minimaliseert ook de overtollige voorraad die anders te snel zou worden besteld en verbruikt onnodig contant geld en magazijnruimte. Ook hier gaan MRO-bedrijven er soms ten onrechte van uit dat deze mogelijkheden worden gedekt door hun EAM-pakket.

ERP-systemen

ERP-systemen bevatten daarentegen doorgaans een MRP-module die is ontworpen om een prognose op te nemen en de materiaalbehoeften te verrekenen. Bij de verwerking wordt rekening gehouden met de huidige voorraad, openstaande verkooporders, geplande opdrachten, inkomende inkooporders, eventuele stuklijsten en artikelen die onderweg zijn tijdens de overdracht tussen locaties. Het vergelijkt deze huidige statuswaarden met de velden van het aanvulbeleid plus eventuele maandelijkse of wekelijkse prognoses om te bepalen wanneer aanvulling moet worden voorgesteld (een datum) en hoeveel moet worden aangevuld (een hoeveelheid).

Waarom zou u dus niet alleen het ERP-systeem gebruiken om het leveringsplan op te stellen en tekorten en overschotten te voorkomen? Ten eerste: hoewel ERP-systemen een tijdelijke aanduiding hebben voor een prognose en sommige systemen het aanbod kunnen salderen met behulp van hun MRP-modules, maken ze het niet gemakkelijk om de geplande vraagvereisten die verband houden met kapitaalprojecten op elkaar af te stemmen. Meestal worden de gegevens over wanneer geplande projecten zullen plaatsvinden buiten het ERP bijgehouden, met name de stuklijst van het project waarin wordt beschreven welke onderdelen nodig zijn om het project te ondersteunen. Ten tweede bieden veel ERP-systemen niets effectiefs als het gaat om voorspellende mogelijkheden, maar vertrouwen ze in plaats daarvan op eenvoudige wiskunde die gewoon niet werkt voor serviceonderdelen vanwege de hoge prevalentie van intermitterende vraag. Ten slotte hebben ERP-systemen geen flexibele, gebruiksvriendelijke interfaces die de interactie met de prognoses en het leveringsplan ondersteunen.

Puntlogica opnieuw ordenen

Zowel ERP als EAM hebben tijdelijke aanduidingen voor methoden voor het aanvullen van bestelpunten, zoals Min/Max-niveaus. U kunt voorraadoptimalisatiesoftware gebruiken om deze velden in te vullen met het voor risico aangepaste bestelpuntbeleid. Vervolgens worden binnen de ERP- of EAM-systemen bestellingen geactiveerd wanneer de werkelijke (niet-geprognosticeerde) vraag de voorhanden voorraad onder de Min. Dit type beleid maakt geen gebruik van een traditionele voorspelling die de vraag week na week of maand na maand projecteert en wordt vaak “vraaggestuurde aanvulling” genoemd (aangezien bestellingen alleen plaatsvinden wanneer de werkelijke vraag de voorraad onder een door de gebruiker gedefinieerd niveau drijft). drempelwaarde).

Maar het feit dat er geen gebruik wordt gemaakt van een periode-over-periode voorspelling betekent niet dat het niet voorspellend is. Het beleid voor herbestellingspunten moet gebaseerd zijn op een voorspelling van de vraag gedurende een aanvultermijn plus een buffer om te beschermen tegen vraag- en aanbodvariabiliteit. MRO-bedrijven moeten weten welk voorraadrisico zij lopen bij een bepaald voorraadbeleid. Voorraadbeheer is tenslotte risicobeheer – vooral in MRO-bedrijven, waar de kosten van stockout zo hoog zijn. Toch bieden ERP en EAM geen enkele mogelijkheid om het voorraadbeleid aan te passen aan de risico's. Ze dwingen gebruikers om dit beleid extern handmatig te genereren of om eenvoudige vuistregels te gebruiken die niet in detail beschrijven welke risico's verbonden zijn aan de keuze van het beleid.

Overzicht

Supply chain planningsfunctionaliteit zoals voorraadoptimalisatie is niet de kernfocus van EAM en ERP. U moet gebruikmaken van aanvullende planningsplatforms, zoals Smart IP&O, die statistische prognoses, gepland projectbeheer en voorraadoptimalisatie ondersteunen. Smart IP&O zal prognoses en voorraadbeleid ontwikkelen die kunnen worden ingevoerd in een EAM- of ERP-systeem om de dagelijkse bestellingen te stimuleren.

 

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Head to Head: welk voorraadbeleid voor serviceonderdelen is het beste?

    Onze klanten hebben doorgaans gekozen voor één manier om hun voorraad serviceonderdelen te beheren. De professor in mij zou graag willen denken dat het gekozen voorraadbeleid een beredeneerde keuze was uit de weloverwogen alternatieven, maar het is waarschijnlijker dat het gewoon zo is gebeurd. Misschien had de inventarishoncho van lang geleden een favoriet en bleef die keuze hangen. Misschien gebruikte iemand een EAM- of ERP-systeem dat maar één keuze bood. Misschien zijn er enkele gissingen gedaan, gebaseerd op de toenmalige omstandigheden.

    De concurrenten

    Het komt maar zelden voor dat bedrijven deze keuzes op lukrake manieren maken. Maar met moderne planningssoftware voor serviceonderdelen kunt u systematischer uw keuzes maken. Dit bericht demonstreert deze stelling door objectieve vergelijkingen te maken tussen drie populaire voorraadbeleidslijnen: Bestel tot aan, Bestelpunt/Bestelhoeveelheid en Min/Max. Ik heb elk van deze beleidsmaatregelen hierin besproken videoblog.

    • Bestel tot. Dit is een periodiek beoordelingsbeleid waarbij elke T dagen de voorhanden voorraad wordt opgeteld en een bestelling van willekeurige grootte wordt geplaatst om het voorraadniveau weer op S-eenheden te brengen.
    • Q, R of bestelpunt/bestelhoeveelheid. Q, R is een continu beoordelingsbeleid waarbij de voorraad elke dag wordt opgeteld. Als er Q of minder eenheden beschikbaar zijn, wordt een bestelling van vaste grootte geplaatst voor R meer eenheden.
    • Min, Max is een ander continu beoordelingsbeleid waarbij de inventaris elke dag wordt opgeteld. Als er Min of minder eenheden beschikbaar zijn, wordt er een bestelling geplaatst om het voorraadniveau weer op Max eenheden te brengen.

    Volgens de inventaristheorie worden deze keuzes gerangschikt in oplopende volgorde van effectiviteit. De eerste optie, Order Up To, is duidelijk de eenvoudigste en goedkoopste om te implementeren, maar sluit de ogen voor wat er gedurende langere tijd gebeurt. Het opleggen van een bepaald tijdsverloop tussen bestellingen maakt het in theorie minder flexibel. De twee continue beoordelingsopties houden daarentegen voortdurend in de gaten wat er gebeurt, zodat ze sneller kunnen reageren op mogelijke voorraadtekorten. De Min/Max-optie is in theorie flexibeler dan de optie die gebruikmaakt van een vast bestelaantal, omdat de omvang van de bestelling dynamisch verandert om aan de vraag te voldoen.

    Dat is de theorie. Dit artikel onderzoekt bewijsmateriaal uit onderlinge vergelijkingen om de theorie te controleren en concrete cijfers te geven over de relatieve prestaties van de drie beleidsmaatregelen.

    De betekenis van “Beste”

    Hoe moeten we de score bijhouden in dit toernooi? Als u een regelmatige lezer bent van dit Smart Forecaster-blog, weet u dat de kern van voorraadplanning een touwtrekken is tussen twee tegengestelde doelstellingen: de voorraad beperkt houden versus de beschikbaarheidsstatistieken van artikelen, zoals het serviceniveau, hoog houden.

    Om de zaken te vereenvoudigen, zullen we ‘één getal berekenen dat alles regelt’: de gemiddelde bedrijfskosten. Het winnende beleid zal het beleid zijn met het laagste gemiddelde.

    Dit gemiddelde is de som van drie componenten: de kosten van het aanhouden van voorraad (“voorraadkosten”), de kosten van het bestellen van aanvullingseenheden (“bestelkosten”) en de kosten van het mislopen van een verkoop (“tekortkosten”). Om het concreet te maken zijn we uitgegaan van de volgende aannames:

    • Elk serviceonderdeel heeft een waarde van $1.000.
    • De jaarlijkse bewaarkosten bedragen 10% van de artikelwaarde, of $100 per jaar per eenheid.
    • Het verwerken van elke aanvulorder kost $20 per bestelling.
    • Elke gevraagde maar niet geleverde eenheid kost de waarde van het onderdeel, $1.000.

    Voor de eenvoud zullen we naar de gemiddelde bedrijfskosten verwijzen als eenvoudigweg “de kosten”.

    Uiteraard kunnen de laagste gemiddelde kosten worden bereikt door uit het bedrijf te stappen. De concurrentie vereiste dus een prestatiebeperking op het gebied van de beschikbaarheid van artikelen: elke optie moest een opvullingspercentage van minimaal 99% behalen.

    De alternatieven: laat het achterwege

    Een belangrijk contextelement is of stockouts resulteren in verliezen of nabestellingen. Ervan uitgaande dat het betreffende serviceonderdeel cruciaal is, zijn we ervan uitgegaan dat niet-uitgevoerde bestellingen verloren gaan, wat betekent dat een concurrent de bestelling vervult. In een MRO-omgeving betekent dit extra downtime als gevolg van voorraadtekorten.

    Om de alternatieven te vergelijken, hebben we onze voorspellende modelleringsengine gebruikt om er een groot aantal uit te voeren Monte Carlo-simulaties. Elke simulatie omvatte het specificeren van de parameterwaarden van elk beleid (bijvoorbeeld de Min- en Max-waarden), het genereren van een vraagscenario, het invoeren daarvan in de logica van het beleid en het meten van de resulterende kosten, gemiddeld over 365 dagen gebruik. Door dit proces 1000 keer te herhalen en het gemiddelde te nemen van de 1000 resulterende kosten, ontstond het eindresultaat voor elke polis.  

    Om de vergelijking eerlijk te maken, moest elk alternatief worden ontworpen voor de beste prestaties. Daarom doorzochten we de ‘ontwerpruimte’ van elke polis om het ontwerp met de laagste kosten te vinden. Dit vereiste het herhalen van het proces dat in de vorige paragraaf is beschreven voor veel paren parameterwaarden en het identificeren van het paar dat de verloren gemiddelde jaarlijkse bedrijfskosten opleverde.

    Met behulp van de algoritmen in Smart Inventory Optimization (SIOTM) hebben we onderlinge vergelijkingen gemaakt op basis van de volgende aannames over vraag en aanbod:

    • Er werd aangenomen dat de vraag naar artikelen intermitterend en zeer variabel was, maar relatief eenvoudig omdat er geen sprake was van trends of seizoensinvloeden, zoals vaak het geval is voor serviceonderdelen. De dagelijkse gemiddelde vraag bedroeg 5 eenheden met een grote standaardafwijking van 13 eenheden. Figuur 1 toont een voorbeeld van de vraag over een jaar. We hebben gekozen voor een zeer uitdagend vraagpatroon, waarbij op sommige dagen de vraag 10 tot zelfs 20 keer zo groot is als de gemiddelde vraag.

    Er werd aangenomen dat de dagelijkse vraag naar onderdelen intermitterend en zeer piekerig was.

    Figuur 1: Er werd aangenomen dat de dagelijkse vraag naar onderdelen intermitterend en zeer piekerig was.

    ​​

    • De levertijden van leveranciers bedroegen destijds 14 dagen (75%) en anders 21 dagen. Dit weerspiegelt het feit dat er altijd onzekerheid bestaat in de toeleveringsketen.

     

    En de winnaar is…

    Klopte de theorie? Soort van'.

    Tabel 1 toont de resultaten van de simulatie-experimenten. Voor elk van de drie concurrerende beleidsmaatregelen worden de gemiddelde jaarlijkse bedrijfskosten, de foutmarge (technisch gezien een betrouwbaarheidsinterval van ongeveer 95% voor de gemiddelde kosten) en de ogenschijnlijk beste keuzes voor parameterwaarden weergegeven.

    Resultaten van de gesimuleerde vergelijkingen

    Tabel 1: Resultaten van de gesimuleerde vergelijkingen

    De gemiddelde kosten voor de (T,S)-polis wanneer T op 30 dagen is vastgesteld, bedroegen bijvoorbeeld $41.680. Maar de Plus/Minus houdt in dat de resultaten verenigbaar zijn met de “echte” kosten (dwz de schatting op basis van een oneindig aantal simulaties) van ergens tussen $39.890 en $43.650. De reden dat er zoveel statistische onzekerheid is, is de extreem piekerige aard van de vraag in dit voorbeeld.

    Tabel 1 laat zien dat in dit voorbeeld de drie beleidsmaatregelen in lijn zijn met de verwachtingen. Nuttigere conclusies zouden echter zijn:

    1. Wat de gemiddelde kosten betreft, zijn de drie polissen opmerkelijk vergelijkbaar. Door een slimme keuze van parameterwaarden kan men goede resultaten behalen met elk van de drie beleidsmaatregelen.
    2. Niet weergegeven in Tabel 1, maar duidelijk uit de gedetailleerde simulatieresultaten, is dat slechte keuzes voor parameterwaarden rampzalig kunnen zijn voor elk beleid.
    3. Het is vermeldenswaard dat het beleid voor periodieke beoordeling (T,S) niet mocht optimaliseren ten opzichte van mogelijke waarden van T. We hebben T op 30 vastgesteld om na te bootsen wat in de praktijk gebruikelijk is, maar degenen die het beleid voor periodieke beoordeling gebruiken, moeten andere beoordelingen overwegen. periodes. Een aanvullend experiment stelde de beoordelingsperiode vast op T = 7 dagen. De gemiddelde kosten in dit scenario werden geminimaliseerd op $36.551 ± $1.668 met S = 343. Dit resultaat is beter dan dat met T = 30 dagen.
    4. We moeten voorzichtig zijn met het overgeneraliseren van deze resultaten. Ze zijn afhankelijk van de veronderstelde waarden van de drie kostenparameters (vasthouden, bestellen en tekort) en het karakter van het vraagproces.
    5. Het is mogelijk om experimenten zoals hier weergegeven automatisch uit te voeren Smart Inventory Optimization. Dit betekent dat ook jij ontwerpkeuzes op een rigoureuze manier kunt onderzoeken.

     

     

     

    Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

    In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten zal enorm stijgen als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk afzonderlijk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende ERP-oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in ERP, en hoe u hiervan kunt profiteren met Smart Inventory Planning en Optimization (Smart IP&O) om in het licht van deze complexiteit uw vraag voor te blijven.

    Waarom heb ik een planningsstuklijst nodig?

    Traditioneel zou elk eindproduct of elke SKU een strak gedefinieerde stuklijst hebben. Als we dat product op voorraad hebben en rond de voorspelde vraag willen plannen, voorspellen we de vraag naar die producten en voeren we vervolgens MRP in om deze voorspelde vraag via de stuklijst van het niveau van het eindproduct naar de componenten te blazen.

    Veel bedrijven bieden echter zeer configureerbare producten aan waarbij klanten opties kunnen selecteren voor het product dat ze kopen. Denk bijvoorbeeld eens aan de laatste keer dat u een personal computer kocht. U koos een merk en model, maar van daaruit kreeg u waarschijnlijk opties te zien: welke CPU-snelheid wilt u? Hoeveel RAM wil je? Wat voor harde schijf en hoeveel ruimte? Als dat bedrijf deze computers binnen een redelijke termijn klaar en beschikbaar wil hebben om naar u te verzenden, anticiperen ze plotseling niet langer alleen maar op de vraag naar dat model; ze moeten dat model voorspellen voor elk type CPU, voor alle hoeveelheden RAM, voor alle soorten harde schijven, en ook alle mogelijke combinaties daarvan! Voor sommige fabrikanten kunnen deze configuraties honderden of duizenden mogelijke voltooide goede permutaties opleveren.

    Planning BOM met nadruk op het grote aantal permutaties Laptops Fabriekscomponenten

    Er kunnen zoveel aanpassingen mogelijk zijn dat de vraag op het niveau van het eindproduct in traditionele zin volkomen onvoorspelbaar is. Duizenden van deze computers kunnen elk jaar worden verkocht, maar voor elke mogelijke configuratie kan de vraag extreem laag en sporadisch zijn – misschien worden bepaalde combinaties één keer verkocht en nooit meer.

    Dit dwingt deze bedrijven vaak om bestelpunten en veiligheidsvoorraadniveaus vooral op componentniveau te plannen, terwijl ze grotendeels reageren op de sterke vraag op het niveau van eindproducten via MRP. Hoewel dit een geldige aanpak is, ontbreekt het aan een systematische manier om voorspellingen te doen die rekening kunnen houden met verwachte toekomstige activiteiten, zoals promoties, aanstaande projecten of verkoopkansen. Voorspellen op het 'geconfigureerde' niveau is feitelijk onmogelijk, en het is ook niet haalbaar om deze prognoseaannames op componentniveau te verweven.

     

    Planning BOM uitgelegd

    Dit is waar Planning BOM's van pas komen. Misschien werkt het verkoopteam aan een grote b2b-opportuniteit voor dat model, of is er een geplande promotie voor Cyber Monday. Hoewel het niet realistisch is om met deze aannames voor elke mogelijke configuratie te werken, is het op modelniveau wel heel goed te doen – en enorm waardevol.

    De Planningstuklijst kan een prognose op een hoger niveau gebruiken en vervolgens de vraag naar beneden blazen op basis van vooraf gedefinieerde verhoudingen mogelijk componenten. De computerfabrikant weet bijvoorbeeld misschien dat de meeste mensen kiezen voor 16 GB RAM, en veel minder mensen kiezen voor de upgrades naar 32 of 64. Met de planningsstuklijst kan de organisatie (bijvoorbeeld) 60% van de vraag terugblazen naar de 16 GB-optie , 30% naar de 32GB-optie en 10% naar de 64GB-optie. Ze zouden hetzelfde kunnen doen voor CPU's, harde schijven of andere beschikbare aanpassingen.  

    Planning BOM Uitgelegd met computer RAM close hd

     

    Het bedrijf kan zijn prognose nu op dit modelniveau richten, waarbij de planningsstuklijst de componentenmix moet uitzoeken. Het is duidelijk dat het definiëren van deze verhoudingen enige denkkracht vereist, maar het plannen van stuklijsten stelt bedrijven in staat te voorspellen wat anders onvoorspelbaar zou zijn.

     

    Het belang van een goede voorspelling

    Natuurlijk nog steeds hebben een goede prognose nodig om in een ERP-systeem te laden. Zoals hierin uitgelegd artikelHoewel ERP een prognose kan importeren, kan het er vaak geen genereren en als dat wel het geval is, zijn er vaak veel moeilijk te gebruiken configuraties nodig die niet vaak opnieuw worden bekeken, wat resulteert in onnauwkeurige prognoses. Het is daarom aan het bedrijf om met eigen prognoses te komen, vaak handmatig geproduceerd in Excel. Handmatige prognoses brengen over het algemeen een aantal uitdagingen met zich mee, waaronder maar niet beperkt tot:

    • Het onvermogen om vraagpatronen zoals seizoensinvloeden of trends te identificeren
    • Overmatig vertrouwen op klant- of verkoopprognoses
    • Gebrek aan nauwkeurigheid of prestatieregistratie

    Hoe goed de MRP ook is geconfigureerd met uw zorgvuldig overwogen planningsstuklijsten, een slechte prognose betekent een slechte MRP-output en wantrouwen in het systeem: garbage in, garbage out. Als we verdergaan met het voorbeeld van het ‘computerbedrijf’, zonder een systematische manier om belangrijke vraagpatronen en/of domeinkennis in de prognose vast te leggen, kan MRP dit nooit zien.

     

    Breid ERP uit met Smart IP&O

    Smart IP&O is ontworpen om uw ERP-systeem uit te breiden met een aantal geïntegreerde oplossingen voor vraagplanning en voorraadoptimalisatie. Het kan bijvoorbeeld automatisch statistische prognoses genereren voor grote aantallen artikelen, maakt intuïtieve prognoseaanpassingen mogelijk, houdt de nauwkeurigheid van prognoses bij en stelt u uiteindelijk in staat echte op consensus gebaseerde prognoses te genereren om beter te kunnen anticiperen op de behoeften van uw klanten.

    Dankzij de zeer flexibele producthiërarchieën is Smart IP&O perfect geschikt voor prognoses op het niveau van de Planning BOM, zodat u belangrijke patronen kunt vastleggen en bedrijfskennis kunt integreren op de niveaus die er het meest toe doen. Bovendien kunt u op elk niveau van uw stuklijst optimale veiligheidsvoorraden analyseren en inzetten.

     

     

    Waarom voorraadplanning niet uitsluitend op eenvoudige vuistregels mag vertrouwen

    Voor te veel bedrijven wordt een cruciaal stukje data-feitenonderzoek – het meten van vraagonzekerheid – afgehandeld met eenvoudige maar onnauwkeurige vuistregels. Vraagplanners berekenen bijvoorbeeld vaak de veiligheidsvoorraad op basis van een door de gebruiker gedefinieerd veelvoud van de voorspelling of het historische gemiddelde. Of ze kunnen hun ERP configureren om meer te bestellen wanneer de beschikbare voorraad gedurende de doorlooptijd twee keer de gemiddelde vraag bereikt voor belangrijke artikelen en 1,5 keer voor minder belangrijke artikelen. Dit is een grote fout met kostbare gevolgen.

    De keuze uit meerdere wordt uiteindelijk een raadspel. Dit komt omdat geen mens precies kan berekenen hoeveel voorraad hij moet opslaan, rekening houdend met alle onzekerheden. Veelvouden van de gemiddelde doorlooptijdvraag zijn eenvoudig te gebruiken, maar u kunt nooit weten of het gebruikte veelvoud te groot of te klein is totdat het te laat is. En als je het eenmaal weet, is alle informatie veranderd, dus je moet opnieuw raden en dan afwachten hoe de laatste gok uitpakt. Met elke nieuwe dag heeft u nieuwe vraag, nieuwe details over doorlooptijden en zijn de kosten mogelijk veranderd. De gok van gisteren, ongeacht hoe goed opgeleid, is vandaag niet langer relevant. Bij een goede voorraadplanning mag geen sprake zijn van giswerk op het gebied van inventaris en prognoses. Beslissingen moeten worden genomen op basis van onvolledige informatie, maar gissen is niet de juiste keuze.

    Weten hoeveel u moet bufferen vereist een op feiten gebaseerde statistische analyse die nauwkeurig vragen kan beantwoorden zoals:

    • Hoeveel extra voorraad is er nodig om de serviceniveaus van 5% te verbeteren
    • Wat de klap op tijdige levering zal zijn als de voorraad met 5% wordt verminderd
    • Welk serviceniveaudoel is het meest winstgevend.
    • Hoe wordt het voorraadrisico beïnvloed door de willekeurige doorlooptijden waarmee we worden geconfronteerd?

    Intuïtie kan deze vragen niet beantwoorden, strekt zich niet uit over duizenden onderdelen en heeft het vaak bij het verkeerde eind. Data, waarschijnlijkheidsberekeningen en moderne software zijn veel effectiever. Het is niet de weg naar duurzame uitmuntendheid.