What is Inventory Planning? A Brief Dictionary of Inventory-Related Terms

Voorraadbeheer concerns the management of physical goods, focusing on an accurate and up-to-the-minute count of every item in inventory and where it is located, as well as efficient retrieval of items. Relevant technologies include computer databases, barcoding, Radio Frequency Identification (RFID), and the use of robots for retrieval.

Inventory Management aims to execute the inventory policy defined by the company. Inventory Management is often accomplished using Enterprise Resource Planning (ERP) systems, which generate purchase orders, production orders, and reporting that details current inventory on hand, incoming, and up for order.

Inventory Planning sets operational policy details, such as item-specific reorder points and order quantities, and predicts future demand and supplier lead times. Important components of an inventory planning process include what-if scenarios for netting out on-hand inventory, analyzing how changes to demand, lead times, and stocking policies will impact ordering, as well as managing exceptions and contingencies.

Inventory Optimization utilizes an analytical process that computes values for inventory planning parameters (e.g., reorder points and order quantities) that optimize a numerical goal or “objective function” without violating a numerical constraint. For instance, an objective function might be to achieve the lowest possible inventory operating cost (defined as the sum of inventory holding costs, ordering costs, and shortage costs), and the constraint might be to achieve a fill rate of at least 90%. Using a mathematical model of the inventory system and probability forecasts of item demand, inventory optimization can quickly and automatically suggest how to best manage thousands of inventory items.

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

Wat is en wat niet

Wat is AI en waarin verschilt het van ML? Wat doet iemand tegenwoordig als hij iets wil weten? Ze Googlen het. En als ze dat doen, begint de verwarring.

Eén bron zegt dat de neurale netmethodologie, deep learning genaamd, een subset is van machine learning, een subset van AI. Maar een andere bron zegt dat deep learning al een onderdeel is van AI, omdat het min of meer de manier nabootst waarop de menselijke geest werkt, terwijl machinaal leren dat niet probeert.

Eén bron zegt dat er twee soorten machinaal leren zijn: onder toezicht en zonder toezicht. Een ander zegt dat er vier zijn: onder toezicht, zonder toezicht, semi-onder toezicht en versterking.

Sommigen zeggen dat versterkend leren machinaal leren is; anderen noemen het AI.

Sommigen van ons, traditionalisten, noemen veel ervan ‘statistieken’, hoewel dat niet allemaal zo is.

Bij het benoemen van methoden is veel ruimte voor zowel emotie als verkoopvaardigheid. Als een softwareleverancier denkt dat je de term ‘AI’ wilt horen, kan het zijn dat hij/zij dat voor je zegt, alleen maar om je blij te maken.

Het is beter om je te concentreren op wat er uiteindelijk uitkomt

Je kunt een verwarrende hype vermijden als je je concentreert op het eindresultaat dat je krijgt van een analytische technologie, ongeacht het label ervan. Er zijn verschillende analytische taken die relevant zijn voor voorraadplanners en vraagplanners. Deze omvatten clustering, detectie van afwijkingen, detectie van regimeveranderingen en regressieanalyse. Alle vier de methoden worden gewoonlijk, maar niet altijd, geclassificeerd als methoden voor machinaal leren. Maar hun algoritmen kunnen rechtstreeks uit de klassieke statistiek komen.

Clustering

Clusteren betekent het groeperen van dingen die op elkaar lijken en het distantiëren ervan van dingen die niet op elkaar lijken. Soms is clusteren eenvoudig: om uw klanten geografisch te scheiden, sorteert u ze eenvoudigweg op staat of verkoopregio. Als het probleem niet zo voor de hand liggend is, kun je data- en clusteralgoritmen gebruiken om de klus automatisch te klaren, zelfs als je met enorme datasets te maken hebt.

Figuur 1 illustreert bijvoorbeeld een cluster van “vraagprofielen”, die in dit geval alle artikelen van een klant in negen clusters verdeelt, op basis van de vorm van hun cumulatieve vraagcurven. Cluster 1.1 linksboven bevat items waarvan de vraag is afgenomen, terwijl Cluster 3.1 linksonder items bevat waarvan de vraag is toegenomen. Clusteren kan ook op leveranciers. De keuze van het aantal clusters wordt doorgaans overgelaten aan het oordeel van de gebruiker, maar ML kan die keuze begeleiden. Een gebruiker kan de software bijvoorbeeld de opdracht geven om “mijn onderdelen in vier clusters op te splitsen”, maar het gebruik van ML kan aan het licht brengen dat er in werkelijkheid zes verschillende clusters zijn die de gebruiker moet analyseren. 

 

Verward over AI en Machine Learning-inventarisplanning

Figuur 1: Artikelen clusteren op basis van de vorm van hun cumulatieve vraag

Onregelmatigheidsdetectie

Vraagvoorspelling wordt traditioneel gedaan met behulp van tijdreeksextrapolatie. Eenvoudige exponentiële afvlakking werkt bijvoorbeeld om op elk moment het ‘midden’ van de vraagverdeling te vinden en dat niveau naar voren te projecteren. Als er in het recente verleden echter een plotselinge, eenmalige stijging of daling van de vraag heeft plaatsgevonden, kan die afwijkende waarde een aanzienlijk maar onwelkom effect hebben op de kortetermijnvoorspellingen. Net zo ernstig voor de voorraadplanning, kan de anomalie een buitensporig effect hebben op de schatting van de variabiliteit van de vraag, wat rechtstreeks doorgaat naar de berekening van de veiligheidsvoorraadvereisten.

Planners geven er misschien de voorkeur aan dergelijke afwijkingen op te sporen en te verwijderen (en misschien offline follow-up te doen om de reden voor de vreemdheid te achterhalen). Maar niemand die een grote klus te klaren heeft, zal duizenden vraagdiagrammen visueel willen scannen om uitschieters op te sporen, deze uit de vraaggeschiedenis te verwijderen en vervolgens alles opnieuw te berekenen. De menselijke intelligentie zou dat kunnen doen, maar het menselijk geduld zou spoedig ophouden. Algoritmen voor het detecteren van afwijkingen zouden het werk automatisch kunnen doen met behulp van relatief eenvoudige statistische methoden. Je zou dit ‘kunstmatige intelligentie’ kunnen noemen als je dat wilt.

Detectie van regimewijzigingen

Detectie van regimeveranderingen is als de grote broer van anomaliedetectie. Regimeverandering is een aanhoudende, in plaats van tijdelijke, verschuiving in een of meer aspecten van het karakter van een tijdreeks. Terwijl de detectie van afwijkingen zich gewoonlijk richt op plotselinge verschuivingen in de gemiddelde vraag, kan een regimeverandering verschuivingen in andere kenmerken van de vraag met zich meebrengen, zoals de volatiliteit of de verdelingsvorm ervan.  

Figuur 2 illustreert een extreem voorbeeld van regimeverandering. Rond dag 120 daalde de vraag naar dit artikel op de bodem. Het voorraadbeheerbeleid en de vraagvoorspellingen op basis van de oudere gegevens zouden aan het einde van de vraaggeschiedenis enorm afwijken van de basis.

Verward over AI en Machine Learning Vraagplanning

Figuur 2: Een voorbeeld van extreme regimeverandering in een artikel met een intermitterende vraag

Ook hier kunnen statistische algoritmen worden ontwikkeld om dit probleem op te lossen, en het zou eerlijk zijn om ze ‘machine learning’ of ‘kunstmatige intelligentie’ te noemen als ze daartoe gemotiveerd zijn. Door ML of AI te gebruiken om regimeveranderingen in de vraaggeschiedenis te identificeren, kan software voor vraagplanning automatisch alleen de relevante geschiedenis gebruiken bij het voorspellen, in plaats van handmatig de hoeveelheid geschiedenis te moeten kiezen die in het model moet worden geïntroduceerd. 

Regressie analyse

Regressieanalyse relateert de ene variabele aan de andere via een vergelijking. De verkoop van kozijnen in één maand kan bijvoorbeeld worden voorspeld op basis van bouwvergunningen die een paar maanden eerder zijn afgegeven. Regressieanalyse wordt al meer dan een eeuw beschouwd als onderdeel van de statistiek, maar we kunnen zeggen dat het ‘machine learning’ is, aangezien een algoritme de precieze manier uitwerkt om kennis van de ene variabele om te zetten in een voorspelling van de waarde van een andere.

Overzicht

Het is redelijk om geïnteresseerd te zijn in wat er gebeurt op het gebied van machinaal leren en kunstmatige intelligentie. Hoewel de aandacht die aan ChatGPT en zijn concurrenten wordt besteed interessant is, is deze niet relevant voor de numerieke kant van vraagplanning of voorraadbeheer. De numerieke aspecten van ML en AI zijn potentieel relevant, maar je moet proberen de wolk van hype rond deze methoden te doorzien en je te concentreren op wat ze kunnen doen. Als u de klus kunt klaren met klassieke statistische methoden, kunt u dat misschien ook doen, en vervolgens uw optie uitoefenen om het ML-label op alles wat beweegt te plakken.

 

 

Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

Net zoals de beroemde astronoom Copernicus ons begrip van de astronomie transformeerde door de zon in het centrum van ons universum te plaatsen, nodigen wij u vandaag uit om uw benadering van voorraadbeheer opnieuw centraal te stellen. En ook al is dit advies niet zo verhelderend, het zal uw bedrijf helpen voorkomen dat u verstrikt raakt in de aantrekkingskracht van voorraadproblemen – voortdurend heen en weer geslingerd tussen voorraadtekorten, overtollige zwaartekracht en de onverwachte kosmische kosten van het bespoedigen van goederen.

In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

In servicegerichte bedrijven zijn de gevolgen van voorraadtekorten vaak zeer groot. Het bereiken van een hoog serviceniveau is afhankelijk van de beschikbaarheid van de juiste onderdelen op het juiste moment. Het hebben van de juiste onderdelen is echter niet de enige factor. Uw Supply Chain-team moet voor elk onderdeel een consensusinventarisatieplan ontwikkelen en dit vervolgens voortdurend bijwerken om realtime veranderingen in vraag, aanbod en financiële prioriteiten weer te geven.

 

Voorraadbeheer met serviceniveaugestuurde planning combineert de mogelijkheid om duizenden items te plannen met strategische modellering op hoog niveau. Dit vereist het aanpakken van de kernproblemen waarmee voorraadmanagers worden geconfronteerd:

  • Gebrek aan controle over het aanbod en de bijbehorende doorlooptijden.
  • Onvoorspelbare intermitterende vraag.
  • Conflicterende prioriteiten tussen onderhouds-/mechanische teams en materiaalbeheer.
  • Reactieve ‘afwachtende’ benadering van planning.
  • Verkeerd toegewezen voorraad, waardoor voorraadtekorten en overschotten ontstaan.
  • Gebrek aan vertrouwen in systemen en processen.

De sleutel tot optimaal beheer van serviceonderdelen is het vinden van de balans tussen het bieden van uitstekende service en het beheersen van de kosten. Om dit te doen, moeten we de kosten van stockout vergelijken met de kosten van het aanhouden van extra voorraad reserveonderdelen. De kosten van een stockout zullen hoger zijn voor kritieke of noodreserveonderdelen, wanneer er een serviceniveauovereenkomst is met externe klanten, voor onderdelen die in meerdere activa worden gebruikt, voor onderdelen met langere doorlooptijden van leveranciers, en voor onderdelen met één enkele leverancier. De voorraadkosten kunnen worden beoordeeld door rekening te houden met de eenheidskosten, de rentetarieven, de magazijnruimte die zal worden verbruikt en de kans op veroudering (onderdelen die worden gebruikt in een wagenpark dat binnenkort met pensioen gaat, hebben bijvoorbeeld een hoger risico op veroudering).

Om te bepalen hoeveel voorraad er voor elk onderdeel op de plank moet worden gelegd, is het van cruciaal belang om consensus te bereiken over de gewenste sleutelgegevens die de afwegingen blootleggen die het bedrijf moet maken om de gewenste KPI's te bereiken. Deze KPI's omvatten serviceniveaus die u vertellen hoe vaak u aan de gebruiksbehoeften voldoet zonder dat u tekortschiet in de voorraad, vulpercentages die u vertellen welk percentage van de vraag is gevuld, en bestelkosten geven een gedetailleerd overzicht van de kosten die u maakt wanneer u aanvullingsorders plaatst en ontvangt. Je hebt ook holdingkosten, die uitgaven omvatten zoals veroudering, belastingen en opslag, en tekortkosten die betrekking hebben op uitgaven die worden gemaakt wanneer er voorraadtekorten optreden.

An MRO business or Aftermarket Parts Planning team might desire a 99% service level across all parts – i.e., the minimum stockout risk that they are willing to accept is 1%. But what if the amount of inventory needed to support that service level is too expensive? To make an informed decision on whether there is going to be a return on that additional inventory investment, you’ll need to know the stockout costs and compare that to the inventory costs. To get stockout costs, multiply two key elements: the cost per stockout and the projected number of stockouts. To get inventory value, multiply the units required by the unit cost of each part. Then determine the annual holding costs (typically 25-35% of the unit cost). Choose the option that yields a total lower cost. In other words, if the benefit associated with adding more stock (reduced shortage costs) outweighs the cost (higher inventory holding costs), then go for it. A thorough understanding of these metrics and the associated tradeoffs serves as the compass for decision-making.

Moderne software helpt bij dit proces doordat u een groot aantal toekomstscenario's kunt simuleren. Door dit te doen, kunt u beoordelen hoe goed uw huidige voorraadbevoorradingsstrategieën waarschijnlijk zullen presteren in het licht van verschillende vraag- en aanbodpatronen. Als er iets tekortschiet of misgaat, is het tijd om uw aanpak opnieuw te kalibreren, waarbij u rekening houdt met actuele gegevens over de gebruiksgeschiedenis, doorlooptijden van leveranciers en kosten om zowel voorraad- als overvoorraadsituaties te voorkomen.

 

Verbeter uw op serviceniveau gebaseerde voorraadplan op consistente wijze.

Concluderend is het van cruciaal belang om uw serviceniveaugestuurde plan voortdurend te beoordelen. Door systematisch prestatiescenario's op te stellen en te verfijnen, kunt u belangrijke meetgegevens en doelen definiëren, de verwachte prestaties benchmarken en de berekening van het voorraadbeleid voor alle artikelen automatiseren. Dit iteratieve proces omvat het monitoren, herzien en herhalen van elke planningscyclus.

De diepgang van uw analyse binnen dit voorraadbeleid is afhankelijk van de gegevens waarover u beschikt en de configuratiemogelijkheden van uw planningssysteem. Om optimale resultaten te bereiken, is het noodzakelijk om voortdurende gegevensanalyses uit te voeren. Dit impliceert dat een handmatige benadering van dataonderzoek doorgaans onvoldoende is voor de behoeften van de meeste organisaties.

Bezoek de volgende blogs voor informatie over hoe Smart Software u kan helpen de doelstellingen van uw servicetoeleveringsketen te bereiken met servicegestuurde planning en meer.

–   “Uitleggen wat serviceniveau betekent in uw voorraadoptimalisatiesoftware”  Aanbevelingen voor kous kunnen verwarrend zijn, vooral als ze botsen met de behoeften in de echte wereld. In dit bericht leggen we uit wat dat 99%-serviceniveau betekent en waarom het cruciaal is om de voorraad effectief te beheren en klanten tevreden te houden in het huidige competitieve landschap.

– “Servicegestuurde planning voor bedrijven met serviceonderdelenService-level-driven serviceonderdelenplanning is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, risico-aangepaste beslissingsondersteuning.

–   “Hoe u een doelserviceniveau kiest.Dit is een strategische beslissing over voorraadrisicobeheer, waarbij rekening wordt gehouden met de huidige serviceniveaus en opvullingspercentages, de doorlooptijden van de bevoorrading en de afwegingen tussen kapitaal-, voorraad- en opportuniteitskosten. Leer benaderingen die kunnen helpen.

–   “De juiste voorspellingsnauwkeurigheid voor voorraadplanning.”  Het feit dat u een serviceniveaudoel stelt, betekent niet dat u dit ook daadwerkelijk zult bereiken. Als u geïnteresseerd bent in het optimaliseren van de voorraadniveaus, concentreer u dan op de nauwkeurigheid van de projectie van het serviceniveau. Leren hoe.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Hoe u voorraadvereisten kunt voorspellen

    Het voorspellen van voorraadbehoeften is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige vraag.

    Beschouw voor de eenvoud het probleem van het voorspellen van de voorraadbehoeften voor slechts één periode vooruit, bijvoorbeeld één dag vooruit. Meestal bestaat de taak van forecasting uit het schatten van het meest waarschijnlijke of gemiddelde niveau van de productvraag. Als de beschikbare voorraad echter gelijk is aan de gemiddelde vraag, bestaat er een kans van ongeveer 50% dat de vraag de voorraad overtreft en resulteert in verloren omzet en/of verloren goede wil. Het instellen van het voorraadniveau op bijvoorbeeld tien keer de gemiddelde vraag zal waarschijnlijk het probleem van voorraadtekorten elimineren, maar zal net zo zeker resulteren in oplopende voorraadkosten.

    De truc van voorraadoptimalisatie is om een bevredigende balans te vinden tussen voldoende voorraad hebben om aan de meeste vraag te voldoen zonder al te veel middelen in het proces vast te leggen. Meestal is de oplossing een combinatie van zakelijk inzicht en statistieken. Het beoordelende deel is het definiëren van een acceptabel voorraadserviceniveau, zoals het direct uit voorraad voldoen aan 95% vraag. Het statistische deel is om het 95e percentiel van de vraag te schatten.

    Wanneer niet omgaan met Intermittent demandkunt u het vereiste voorraadniveau vaak schatten door uit te gaan van een klokvormige (normale) vraagcurve, waarbij u zowel het midden als de breedte van de klokcurve schat, en vervolgens een standaard statistische formule gebruikt om het gewenste percentiel te schatten. Het verschil tussen het gewenste voorraadniveau en het gemiddelde vraagniveau wordt de ‘veiligheidsvoorraad’ genoemd, omdat deze beschermt tegen de mogelijkheid van voorraadtekorten.

    Bij een intermitterende vraag is de klokvormige curve een zeer slechte benadering van de statistische verdeling van de vraag. In dit speciale geval maakt Smart gebruik van gepatenteerde technologie voor intermitterende vraag die is ontworpen om de marges nauwkeurig te voorspellen en een betere schatting te maken van de veiligheidsvoorraad die nodig is om het vereiste voorraadserviceniveau te bereiken.

     

    Uitleggen wat 'serviceniveau' betekent in uw voorraadoptimalisatiesoftware

    Klanten vragen ons vaak waarom een kousaanbeveling "zo hoog" is. Hier is een vraag die we onlangs ontvingen:

    Tijdens onze laatste teamvergadering hebben we enkele items gevonden met abnormale hiaten tussen onze huidige ROP en de door Smart voorgestelde ROP op een 99%-serviceniveau. De zorg is dat het systeem aangeeft dat het bestelpunt fors omhoog zal moeten om een 99%-serviceniveau te halen. Kunt u ons helpen de berekening te begrijpen?

    Toen we de gegevens bekeken, was het voor de klant duidelijk dat de door Smart berekende ROP inderdaad klopte. We concludeerden (1) wat ze echt wilden was een veel lager doel voor het serviceniveau en (2) we hadden niet goed uitgelegd wat er werkelijk werd bedoeld met 'serviceniveau'. 

    Dus, wat betekent een "99%-serviceniveau" eigenlijk? 

    Als het gaat om het doel dat u invoert in uw voorraadoptimalisatiesoftware, betekent dit dat het voorraadniveau voor het artikel in kwestie een kans van 99% heeft om te kunnen vullen wat de klant nodig heeft meteen.  Als u bijvoorbeeld 50 stuks op voorraad heeft, is de kans 99% dat de volgende vraag ergens in het bereik van 0 tot 50 stuks zal vallen.

    Wat onze klant bedoelde was dat 99% van de keren dat een klant een bestelling plaatste, dat ook zo was volledig geleverd binnen de door de klant opgegeven levertijd. Met andere woorden, niet per se meteen maar wanneer beloofd.  

    Het is duidelijk dat hoe meer tijd u uzelf geeft om aan een klant te leveren, hoe hoger uw serviceniveau zal zijn. Maar dat onderscheid wordt vaak niet expliciet begrepen wanneer nieuwe gebruikers van voorraadoptimalisatiesoftware wat-als-scenario's uitvoeren op verschillende serviceniveaus. En dat kan tot grote verwarring leiden. Het berekenen van serviceniveaus op basis van onmiddellijke voorraadbeschikbaarheid is een hogere norm: moeilijker te halen maar veel competitiever.

    Onze productieklanten geven vaak serviceniveaus aan op basis van doorlooptijden aan hun klanten, dus het is niet essentieel voor hen om direct uit het schap te leveren. Onze klanten in de distributie, Maintenance Repair and Operations (MRO) en ruimtes voor reserveonderdelen moeten daarentegen normaal gesproken dezelfde dag of binnen 24 uur verzenden. Voor hen is het een competitieve noodzaak om meteen te verzenden en dit volledig te doen.

    Houd bij het invoeren van beoogde serviceniveaus met uw voorraadoptimalisatiesoftware rekening met dit onderscheid. Kies het serviceniveau op basis van het percentage van de tijd dat u de volledige voorraad direct vanaf de plank wilt verzenden.  

    Geef tekorten niet de schuld aan problematische doorlooptijden.

    Vertragingen in de doorlooptijd en variabiliteit in de levering zijn dagelijkse realiteit in de toeleveringsketen, maar organisaties die voorraad hebben, worden vaak verrast wanneer een leverancier te laat is. Een effectief voorraadplanningsproces omarmt dit feit en ontwikkelt beleid dat effectief rekening houdt met deze onzekerheid. Natuurlijk zullen er momenten zijn dat vertragingen in de doorlooptijd uit het niets opduiken en een tekort veroorzaken. Maar meestal zijn de tekorten het gevolg van:

    1. Het voorraadbeleid (bijv. bestelpunten, veiligheidsvoorraden en min/max-niveaus) niet vaak genoeg berekenen om veranderingen in de doorlooptijd op te vangen. 
    2. Slechte schattingen van de werkelijke doorlooptijd gebruiken, zoals alleen gemiddelden van historische ontvangsten gebruiken of vertrouwen op een offerte van een leverancier.

    Kalibreer in plaats daarvan het beleid voor elk afzonderlijk onderdeel tijdens elke planningscyclus om veranderingen in de vraag en doorlooptijden op te vangen. In plaats van alleen uit te gaan van een gemiddelde doorlooptijd, simuleer je de doorlooptijden met behulp van scenario's. Op deze manier houdt het aanbevolen voorraadbeleid rekening met de waarschijnlijkheid dat doorlooptijden hoog zijn en wordt het dienovereenkomstig aangepast. Wanneer u dit doet, identificeert u de benodigde voorraadverhogingen voordat het te laat is. U genereert meer omzet en zorgt voor aanzienlijke verbeteringen in de klanttevredenheid.