Taiichi Ohno van Toyota wordt gecrediteerd voor het uitvinden van Just-In-Time (JIT) -productie in de jaren vijftig. JIT zorgt ervoor dat een fabrikant alleen produceert wat nodig is, alleen wanneer nodig en alleen in de benodigde hoeveelheid. Die innovatie heeft sindsdien grote gevolgen gehad, sommige goed, sommige minder.
Een recent artikel in de New York Times "How the World Ran out of Everything" beschrijft enkele van de "mindere" effecten. JIT heeft bijvoorbeeld de voorraadkosten zeer laag gehouden, waardoor het rendement op activa is verbeterd. Dit wordt op zijn beurt beloond door Wall Street, dus veel bedrijven hebben de afgelopen decennia hun voorraden drastisch verminderd. Gefocust als ze waren op financiën, negeerden veel bedrijven de risico's die inherent zijn aan het verminderen van voorraden tot het punt dat 'mager' begon te grenzen aan 'uitgemergeld'. Gecombineerd met de toegenomen globalisering en nieuwe risico's van leveringsonderbrekingen, zijn de voorraden in overvloed toegenomen.
Sommige industrieën zijn te ver gegaan, waardoor ze blootstaan aan disruptie. In een competitie om de laagste kosten te krijgen, hebben bedrijven onbedoeld hun risico geconcentreerd, onderbroken door tekorten aan grondstoffen of componenten en soms gedwongen om assemblagelijnen stop te zetten. Wall Street kijkt niet goed naar productiestops.
We weten allemaal dat willekeurige gebeurtenissen het probleem hebben vergroot. De eerste daarvan was de Covid-pandemie. Aangezien de pandemie de fabrieksactiviteiten heeft belemmerd en wanorde heeft veroorzaakt in de wereldwijde scheepvaart, worden veel economieën over de hele wereld gekweld door tekorten aan een enorm scala aan goederen – van computerchips tot hout tot kleding.
De schade wordt nog groter als er meer onverwachte dingen fout gaan. De blokkade van het Suezkanaal is een goed voorbeeld, het blokkeren van de belangrijkste handelsroute tussen Europa en Azië. Onlangs hebben cyberaanvallen een nieuwe laag van verstoring toegevoegd.
De reactie creëert zijn eigen problemen, net zoals de cyberaanval op de koloniale pijpleiding gastekorten veroorzaakte door paniekaankopen. Leveranciers beginnen langzamer dan normaal met het uitvoeren van bestellingen. Fabrikanten en distributeurs keren de koers om en vergroten hun voorraden en diversifiëren hun leveranciers om toekomstige voorraden te voorkomen. Het simpelweg uitbreiden van magazijnen biedt misschien niet de oplossing, en de noodzaak om te bepalen hoeveel voorraad moet worden aangehouden, wordt elke dag urgenter.
Dus hoe kun je een real-world plan voor JIT-inventarisatie uitvoeren te midden van al deze risico's en onzekerheden? De basis van uw reactie zijn uw bedrijfsgegevens. Onzekerheid heeft twee bronnen: vraag en aanbod. Voor beide heb je de feiten nodig.
Maak aan de aanbodzijde gebruik van de gegevens die u heeft over recente doorlooptijden van leveranciers, die de huidige turbulentie weerspiegelen. Gebruik geen gemiddelde waarden als u kansverdelingen kunt gebruiken die het volledige bereik van onvoorziene gebeurtenissen weergeven. Overweeg deze vergelijking. Leverancier A voert nu op betrouwbare wijze bestellingen uit in precies 10 dagen. Leverancier B is ook gemiddeld 10 dagen maar doet het met een 78%/22% mix van 7 en 21 dagen. Zowel A als B hebben een gemiddelde aanvullingsvertraging van 10 dagen, maar de operationele resultaten die ze opleveren zullen heel verschillend zijn. U kunt dit alleen herkennen als u waarschijnlijkheidsmodellen van voorraadprestaties gebruikt.
Aan de vraagzijde gelden soortgelijke overwegingen. Ten eerste, erken dat er mogelijk een grote verschuiving heeft plaatsgevonden in de aard van de vraag naar artikelen (statistici noemen dit een "regimeverandering"), dus verwijder uit uw analyse alle gegevens die de "goede oude tijd" vertegenwoordigen. Stop dan weer met denken in termen van gemiddelden. Hoewel de gemiddelde vraag belangrijk is, is deze geen voldoende beschrijving van het probleem waarmee u wordt geconfronteerd. Even belangrijk is de volatiliteit van de vraag. Volatiliteit is de reden dat u in de eerste plaats voorraad aanhoudt. Als de vraag volledig voorspelbaar zou zijn, zou u geen stockouts of overtollige voorraad hebben. Net zoals u de volledige waarschijnlijkheidsverdeling van doorlooptijden voor bevoorrading moet schatten, hebt u de volledige verdeling van vraagwaarden nodig.
Zodra u het bereik van variabiliteit in zowel vraag als aanbod begrijpt, kunt u met probabilistische prognoses rekening houden met verstoringen en ongebruikelijke gebeurtenissen. Software zet uw gegevens on demand en doorlooptijden om in een groot aantal scenario's die aangeven hoe uw volgende planningsperiode eruit zou kunnen zien. Op basis van die scenario's kan de software bepalen hoe uw doelen het beste kunnen worden bereikt voor statistieken als voorraadkosten en voorraadpercentages. Met behulp van oplossingen zoals Smart Inventory Optimization plant u vol vertrouwen op basis van uw beoogde voorraadrisico met minimale voorraadkosten. U kunt ook overwegen om de oplossing optimale serviceniveaudoelen te laten voorschrijven door de kosten van extra voorraad versus voorraadkosten te beoordelen.
Bij voorraadplanning kunnen we, net als in de wetenschap, niet ontsnappen aan de realiteit van onzekerheid en de impact van ongewone gebeurtenissen. We moeten dienovereenkomstig plannen: met software voor voorraadoptimalisatie kunt u het serviceniveau met de laagste kosten bepalen. Dit creëert een coherente, bedrijfsbrede inspanning die inzicht in de huidige activiteiten combineert met wiskundig correcte beoordelingen van toekomstige risico's en omstandigheden.
Voorraadplanning is "interessanter" geworden en vereist een grotere mate van risicobewustzijn en wendbaarheid. De juiste software kan daarbij helpen.
gerelateerde berichten
Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie
In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken.
Dagelijkse vraagscenario's
In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.
Constructief spelen met Digital Twins
Degenen onder u die actuele onderwerpen volgen, zullen bekend zijn met de term ‘digitale tweeling’. Degenen die het te druk hebben gehad met hun werk, willen misschien verder lezen en bijpraten. Hoewel er verschillende definities van een digitale tweeling bestaan, is er één die goed werkt: een digitale tweeling is een dynamische virtuele kopie van een fysiek bezit, proces, systeem of omgeving die er hetzelfde uitziet en zich hetzelfde gedraagt als zijn tegenhanger in de echte wereld. Een digitale tweeling neemt gegevens op en repliceert processen, zodat u mogelijke prestatieresultaten en problemen kunt voorspellen die het echte product kan ondergaan.