De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

De meeste statistische prognoses werken in één directe stroom van gegevens uit het verleden naar prognoses. Voorspellen met voorlopende indicatoren werkt op een andere manier. Een leidende indicator is een tweede variabele die van invloed kan zijn op degene die wordt voorspeld. Het toepassen van toetsbare menselijke kennis over de voorspellende kracht in de relatie tussen deze verschillende gegevenssets levert soms superieure nauwkeurigheid op.

Meestal is een prognose uitsluitend gebaseerd op de geschiedenis van het item dat wordt voorspeld. Laten we aannemen dat het probleem van de voorspeller is om de toekomstige verkoop per eenheid van een belangrijk product te voorspellen. Het proces begint met het verzamelen van gegevens over de eerdere verkopen van het product. (Gregory Hartunian deelt wat praktisch advies over het kiezen van de best beschikbare data in een eerder bericht op de Smart Forecaster.) Deze gegevens stromen naar prognosesoftware, die het verkooprecord analyseert om het niveau van willekeurige variabiliteit te meten en alle voorspelbare aspecten te benutten, zoals trend of regelmatige patronen van seizoensvariabiliteit. De prognose is volledig gebaseerd op het gedrag in het verleden van het artikel dat wordt voorspeld. Er wordt expliciet rekening gehouden met niets dat het schommelen en schudden in de verkoopgrafiek van het product zou kunnen hebben veroorzaakt. Deze aanpak is snel, eenvoudig, op zichzelf staand en schaalbaar, omdat software automatisch door een groot aantal prognoses kan bladeren.

Maar soms kan de voorspeller het beter doen, ten koste van meer werk. Als de voorspeller door de mist van willekeur kan kijken en een tweede variabele kan identificeren die van invloed is op degene die wordt voorspeld, een leidende indicator, zijn nauwkeurigere voorspellingen mogelijk.

Stel dat het product vensterglas voor woningen is. Het is goed mogelijk dat stijgingen of dalingen van het aantal bouwvergunningen voor nieuwbouwwoningen enkele maanden later worden weerspiegeld in overeenkomstige stijgingen of dalingen van het aantal bestelde glasplaten. Als de voorspeller deze "vertraagde" of vertraagde relatie in een vergelijking kan destilleren, kan die vergelijking worden gebruikt om de glasverkoop over enkele maanden te voorspellen, dus met behulp van bekende waarden van de leidende indicator. Deze vergelijking wordt een "regressievergelijking" genoemd en heeft de vorm zoiets als:

Verkoop van glas in 3 maanden = 210,9 + 26,7 × Aantal woningen start deze maand.

Voorspellingssoftware kan de gegevens over de start van de woningbouw en de glasverkoop omzetten in zo'n regressievergelijking.

Grafiek met een relatie tussen voorbeeldcijfers voor verschoven bouwvergunningen en de vraag naar glas
Voorlopende indicatoren aangetoond
In tegenstelling tot automatische statistische prognoses op basis van de eerdere verkopen van een product, stuit prognoses met een voorlopende indicator echter op hetzelfde probleem als het spreekwoordelijke recept voor konijnenstoofpot: "Vang eerst een konijn". Hier is de inhoudelijke expertise van de voorspeller cruciaal voor succes. De forecaster moet één of meerdere kandidaten kunnen voordragen voor de functie van leading indicator. Na deze cruciale stap kan op basis van de kennis, ervaring en intuïtie van de voorspeller software worden gebruikt om te verifiëren dat er werkelijk een voorspellende, tijdvertraagde relatie bestaat tussen de kandidaat-voorlopende indicator en de te voorspellen variabele.

Deze verificatiestap wordt uitgevoerd met behulp van een "kruiscorrelatie"-analyse. De software neemt in wezen als invoer een reeks waarden van de te voorspellen variabele en een andere reeks waarden van de veronderstelde leidende indicator. Vervolgens schuift het de gegevens van de voorspellingsvariabele vooruit met achtereenvolgens een, twee, drie, etc. tijdsperioden. Bij elke slip in de tijd (een "lag" genoemd, omdat de leidende indicator steeds verder achterloopt op de voorspellingsvariabele), controleert de software op een associatiepatroon tussen de twee variabelen. Als het een patroon vindt dat te sterk is om te worden verklaard als een statistisch ongeval, wordt het vermoeden van de voorspeller bevestigd.

Het is duidelijk dat prognoses met voorlopende indicatoren meer werk zijn dan prognoses met alleen de eigen waarden uit het verleden van een item. De voorspeller moet een leidende indicator identificeren, te beginnen met een lijst die wordt voorgesteld door de vakkennis van de voorspeller. Dit is een "handgemaakt" proces dat niet geschikt is voor massaproductie van prognoses. Maar het kan een succesvolle aanpak zijn voor een kleiner aantal belangrijke items die de extra moeite waard zijn. De rol van prognosesoftware, zoals ons SmartForecasts-systeem, is om de voorspeller te helpen de leidende indicator te verifiëren en deze vervolgens te benutten.

Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Mastering Automatic Forecasting for Time Series Data

Beheersing van automatische prognoses voor tijdreeksgegevens

In deze blog onderzoeken we de automatische prognose voor vraagprojecties in tijdreeksen. Er zijn meerdere methoden om de toekomstige vraag naar een artikel te voorspellen, en dit wordt complex als het om duizenden artikelen gaat, die elk een andere voorspellingstechniek vereisen vanwege hun unieke vraagpatronen.

Forecast-Based Inventory Management for Better Planning

Op prognoses gebaseerd voorraadbeheer voor een betere planning

Op prognoses gebaseerd voorraadbeheer, of MRP-logica (Material Needs Planning), is een methode voor vooruitplanning die bedrijven helpt aan de vraag te voldoen zonder dat er sprake is van over- of ondervoorraad. Door te anticiperen op de vraag en de voorraadniveaus aan te passen, wordt een evenwicht behouden tussen het voldoen aan de behoeften van de klant en het minimaliseren van overtollige voorraadkosten. Deze aanpak optimaliseert de bedrijfsvoering, vermindert verspilling en verbetert de klanttevredenheid.

Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]