De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

De meeste statistische prognoses werken in één directe stroom van gegevens uit het verleden naar prognoses. Voorspellen met voorlopende indicatoren werkt op een andere manier. Een leidende indicator is een tweede variabele die van invloed kan zijn op degene die wordt voorspeld. Het toepassen van toetsbare menselijke kennis over de voorspellende kracht in de relatie tussen deze verschillende gegevenssets levert soms superieure nauwkeurigheid op.

Meestal is een prognose uitsluitend gebaseerd op de geschiedenis van het item dat wordt voorspeld. Laten we aannemen dat het probleem van de voorspeller is om de toekomstige verkoop per eenheid van een belangrijk product te voorspellen. Het proces begint met het verzamelen van gegevens over de eerdere verkopen van het product. (Gregory Hartunian deelt wat praktisch advies over het kiezen van de best beschikbare data in een eerder bericht op de Smart Forecaster.) Deze gegevens stromen naar prognosesoftware, die het verkooprecord analyseert om het niveau van willekeurige variabiliteit te meten en alle voorspelbare aspecten te benutten, zoals trend of regelmatige patronen van seizoensvariabiliteit. De prognose is volledig gebaseerd op het gedrag in het verleden van het artikel dat wordt voorspeld. Er wordt expliciet rekening gehouden met niets dat het schommelen en schudden in de verkoopgrafiek van het product zou kunnen hebben veroorzaakt. Deze aanpak is snel, eenvoudig, op zichzelf staand en schaalbaar, omdat software automatisch door een groot aantal prognoses kan bladeren.

Maar soms kan de voorspeller het beter doen, ten koste van meer werk. Als de voorspeller door de mist van willekeur kan kijken en een tweede variabele kan identificeren die van invloed is op degene die wordt voorspeld, een leidende indicator, zijn nauwkeurigere voorspellingen mogelijk.

Stel dat het product vensterglas voor woningen is. Het is goed mogelijk dat stijgingen of dalingen van het aantal bouwvergunningen voor nieuwbouwwoningen enkele maanden later worden weerspiegeld in overeenkomstige stijgingen of dalingen van het aantal bestelde glasplaten. Als de voorspeller deze "vertraagde" of vertraagde relatie in een vergelijking kan destilleren, kan die vergelijking worden gebruikt om de glasverkoop over enkele maanden te voorspellen, dus met behulp van bekende waarden van de leidende indicator. Deze vergelijking wordt een "regressievergelijking" genoemd en heeft de vorm zoiets als:

Verkoop van glas in 3 maanden = 210,9 + 26,7 × Aantal woningen start deze maand.

Voorspellingssoftware kan de gegevens over de start van de woningbouw en de glasverkoop omzetten in zo'n regressievergelijking.

Grafiek met een relatie tussen voorbeeldcijfers voor verschoven bouwvergunningen en de vraag naar glas
Voorlopende indicatoren aangetoond
In tegenstelling tot automatische statistische prognoses op basis van de eerdere verkopen van een product, stuit prognoses met een voorlopende indicator echter op hetzelfde probleem als het spreekwoordelijke recept voor konijnenstoofpot: "Vang eerst een konijn". Hier is de inhoudelijke expertise van de voorspeller cruciaal voor succes. De forecaster moet één of meerdere kandidaten kunnen voordragen voor de functie van leading indicator. Na deze cruciale stap kan op basis van de kennis, ervaring en intuïtie van de voorspeller software worden gebruikt om te verifiëren dat er werkelijk een voorspellende, tijdvertraagde relatie bestaat tussen de kandidaat-voorlopende indicator en de te voorspellen variabele.

Deze verificatiestap wordt uitgevoerd met behulp van een "kruiscorrelatie"-analyse. De software neemt in wezen als invoer een reeks waarden van de te voorspellen variabele en een andere reeks waarden van de veronderstelde leidende indicator. Vervolgens schuift het de gegevens van de voorspellingsvariabele vooruit met achtereenvolgens een, twee, drie, etc. tijdsperioden. Bij elke slip in de tijd (een "lag" genoemd, omdat de leidende indicator steeds verder achterloopt op de voorspellingsvariabele), controleert de software op een associatiepatroon tussen de twee variabelen. Als het een patroon vindt dat te sterk is om te worden verklaard als een statistisch ongeval, wordt het vermoeden van de voorspeller bevestigd.

Het is duidelijk dat prognoses met voorlopende indicatoren meer werk zijn dan prognoses met alleen de eigen waarden uit het verleden van een item. De voorspeller moet een leidende indicator identificeren, te beginnen met een lijst die wordt voorgesteld door de vakkennis van de voorspeller. Dit is een "handgemaakt" proces dat niet geschikt is voor massaproductie van prognoses. Maar het kan een succesvolle aanpak zijn voor een kleiner aantal belangrijke items die de extra moeite waard zijn. De rol van prognosesoftware, zoals ons SmartForecasts-systeem, is om de voorspeller te helpen de leidende indicator te verifiëren en deze vervolgens te benutten.

Thomas Willemain, PhD, was mede-oprichter van Smart Software en is momenteel Senior Vice President for Research. Dr. Willemain is ook emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute en als lid van de onderzoeksstaf van het Centre for Computing Sciences, Institute for Defence Analyses.

Laat een reactie achter

gerelateerde berichten

Je moet samenwerken met de algoritmen

Je moet samenwerken met de algoritmen

This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software.

Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

Beantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken

Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie.

Elk voorspellingsmodel is goed waarvoor het is ontworpen

Elk voorspellingsmodel is goed waarvoor het is ontworpen

Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is.

recente berichten

  • Direct naar het brein van de baas - InventarisanalyseRechtstreeks naar het brein van de baas – voorraadanalyse en rapportage
    In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies. […]
  • U moet samenwerken met de algoritmen voor voorraadbeheerJe moet samenwerken met de algoritmen
    This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software. […]
  • Heroverweging van de nauwkeurigheid van prognoses, een verschuiving van nauwkeurigheid naar foutstatistiekenBeantwoord de precisie van het pronóstico: een precisie-cambio met de meetmetrieken
    Het meten van de nauwkeurigheid van prognoses is een onmiskenbaar belangrijk onderdeel van het vraagplanningsproces. Deze voorspellingsscorekaart zou kunnen worden opgebouwd op basis van een van de twee contrasterende gezichtspunten voor het berekenen van metrieken. Vanuit het foutperspectief wordt de vraag gesteld: “Hoe ver lag de voorspelling van de werkelijkheid?” Vanuit het nauwkeurigheidsperspectief wordt de vraag gesteld: “Hoe dicht lag de voorspelling bij de werkelijkheid?” Beide zijn geldig, maar foutstatistieken bieden meer informatie. […]
  • Het gebruik van belangrijke prestatievoorspellingen om het voorraadbeleid te plannen
    Ik kan me niet voorstellen dat ik een voorraadplanner ben op het gebied van reserveonderdelen, distributie of productie en dat ik veiligheidsvoorraden, bestelpunten en bestelsuggesties moet creëren zonder gebruik te maken van belangrijke prestatievoorspellingen van serviceniveaus, opvullingspercentages en voorraadkosten. […]
  • Elk voorspellingsmodel is goed waarvoor het is ontworpenElk voorspellingsmodel is goed waarvoor het is ontworpen
    Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelenBelangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]
    • 5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren
      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren. […]
    • Bottom Line-strategieën voor planningssoftware voor reserveonderdelenBottom Line-strategieën voor de planning van reserveonderdelen
      Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren. […]