Bud Schultz, CPA, Vice President of Finance voor NKK Switches, presenteerde de ervaring van zijn bedrijf met vraagplanning tijdens een recent webinar. Het volgende is een korte samenvatting van de belangrijkste punten van Bud; bekijk het volledige webinar door te klikken hier.
Vraag: Vertel ons over de zakelijke en vraagplanningsuitdagingen van NKK.
NKK Switches, gevestigd in Scottsdale, Arizona, is een toonaangevende fabrikant en leverancier van elektromechanische schakelaars. Het bedrijf omvat veel verschillende soorten schakelaars: schakelaars, drukknoppen, draaiknoppen en zelfs sommige programmeerbare soorten schakelaars. We staan bekend om onze hoge kwaliteit en om ons vermogen om te voldoen aan een uitzonderlijk breed scala aan klanteisen op een turnkey (custom configuratie) basis. NKK Switches produceert op maat gemaakte oplossingen van onderdelen die uitsluitend afkomstig zijn van productiefaciliteiten in Japan en China.
Er zijn letterlijk miljoenen mogelijke switchconfiguraties en we weten nooit welke geconfigureerde oplossingen onze klanten zullen bestellen. Dit maakt onze vraag zeer intermitterend en buitengewoon moeilijk te voorspellen. Sterker nog, tot voor kort beschouwden we onze vraag als onvoorspelbaar. We werkten op basis van build-to-order, wat betekende dat bestellingen van klanten pas konden worden uitgevoerd als hun onderdelen waren geproduceerd en vervolgens door NKK tot eindproducten waren verwerkt. Dit resulteerde in lange doorlooptijden, pijnlijk voor onze klanten en een competitieve uitdaging voor onze verkooporganisatie.
Vraag: Wat verwachtte u van een verbeterd product? eis voorspelling?
Toen we begonnen met het onderzoeken van de waarde van vraagvoorspellingssoftware (SmartForecasts van Smart Software), probeerden we de beslissing te bekijken vanuit het oogpunt van Return on Investment (ROI). We hebben wat kapitaalbudgettering gedaan, aannames gedaan over mogelijke verlagingen van voorraadniveaus, lagere voorraadkosten en andere potentiële besparingen. Hoewel de kapitaalbudgetten een positief investeringsrendement opleverden, konden we op basis van die informatie niet verder. We hadden geen vertrouwen in onze aannames en waren bang dat we de veiligheidsvoorraad en voorraadniveaus die de software zou suggereren niet zouden kunnen rechtvaardigen.
Wat we niet hadden verwacht, was een uitdaging van ons moederbedrijf. In het licht van de mogelijkheden van een nieuw geïmplementeerd ERP-systeem, zouden ze een nieuwe aanpak overwegen. Als we aantoonbaar betrouwbare vraagprognoses zouden kunnen maken, zouden ze overwegen om grondstoffen in te kopen en schakelcomponenten te produceren op basis van build-to-forecast in plaats van build-to-order. Dit opende de deur naar een veel diepere impact. We hebben de werkelijke cijfers gedurende een periode van twaalf maanden afgezet tegen de prognoses en ontdekten dat onze prognoses, met name in totaal, uitzonderlijk nauwkeurig waren: de werkelijke vraag lag binnen 3% van de prognose. Toen we eenmaal de geldigheid van onze prognoses konden bewijzen, konden we doorgaan met het plan van het moederbedrijf om producten te vervaardigen op basis van die prognoses.
V: Hoe hebben nauwkeurige prognoses van productlijnen met intermitterende vraaggegevens de activiteiten van NKK getransformeerd?
Van de vele verschillende combinaties die we op bestelling produceren, kunnen afzonderlijke onderdelen van schakelaars een zeer intermitterende vraag vertonen (lange periodes met nul bestellingen en dan schijnbaar willekeurige pieken), maar we kunnen meer consistente patronen in schakelaarreeksen identificeren. Alle onderdeelnummers in een bepaalde serie hebben gemeenschappelijke componenten en grondstoffen, zoals plastic behuizing, beugels en andere hardware, goud, zilver en LED's.
Door onze productiefaciliteiten te voorzien van betrouwbare prognoses, konden we ingrijpende veranderingen doorvoeren. Onze fabrieken zouden kunnen beginnen met het inkopen van grondstoffen die in totaal uiteindelijk zouden worden gebruikt bij de productie van verschillende onderdeelnummers binnen die serie, zelfs als de specifieke te produceren onderdeelnummers onbekend waren op het moment dat de prognoses werden gemaakt. En in veel gevallen was het, ondanks de onregelmatige vraaggeschiedenisgegevens, voor de leveranciers zelfs mogelijk om specifieke onderdeelnummers te produceren op basis van de prognose.
Zodra het programma volledig is geïmplementeerd, verwachten we dat onze doorlooptijden zullen worden teruggebracht tot de helft van de tijd of zelfs minder. Kortere doorlooptijden zullen resulteren in lagere bestelpunten, resulterend in hogere serviceniveaus terwijl we onze voorraadvereisten verminderen.
Bud Schultz leidt alle financiële en boekhoudkundige functies bij NKK. Zijn achtergrond als Certified Public Accountant, advocaat, ingenieur en piloot voor de Amerikaanse luchtmacht biedt een uniek perspectief op financiën voor technische en productieactiviteiten.
gerelateerde berichten

Prepare your spare parts planning for unexpected shocks
In today’s unpredictable business climate, we do have to worry about supply chain disruptions, long lead times, rising interest rates, and volatile demand. With all these challenges, it’s never been more vital for organizations to accurately forecast parts usage, stocking levels, and to optimize replenishment policies such as reorder points, safety stocks, and order quantities. In this blog, we’ll explore how companies can leverage innovative solutions like inventory optimization and parts forecasting software that utilize machine learning algorithms, probabilistic forecasting, and analytics to stay ahead of the curve and protect their supply chains from unexpected shocks.

Electric Utilities’ Problems with Spare Parts
Every organization that runs equipment needs spare parts. All of them must cope with issues that are generic no matter what their business. Some of the problems, however, are industry specific. This post discusses one universal problem that manifested in a nuclear plant and one that is especially acute for any electric utility.

Hoe u reserveonderdelen kunt voorspellen die weinig worden gebruikt
Wat doet u wanneer u een periodiek gevraagd artikel, zoals een reserveonderdeel, voorspelt met een gemiddelde vraag van minder dan één eenheid per maand? Meestal is de vraag nul, maar het onderdeel is zakelijk significant; het kan niet worden genegeerd en moet worden voorspeld om er zeker van te zijn dat u voldoende voorraad heeft.