Gestión del inventario para promociones

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

en un Publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman sesgo, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva.

Revisando los términos, recuerde que el “nivel de servicio” es la probabilidad de no agotarse mientras espera que llegue una orden de reposición, mientras que la “tasa de llenado” es el porcentaje de la demanda que se satisface inmediatamente con el stock. En mi publicación anterior, "El flagelo de la asimetría", señalé que cierto tipo de distribución de la demanda, que tiene una "cola larga a la derecha", conducirá a tasas de llenado que pueden ser mucho más bajas que los niveles de servicio. También señalé que, a veces, la única forma de mejorar la tasa de llenado es aumentar el nivel de servicio objetivo a un nivel inusualmente alto, lo que puede resultar costoso.

En esta publicación, analizaré la solución del problema en un caso especial: la asimetría resultante de promociones de ventas efectivas combinadas con "demanda intermitente". La demanda intermitente tiene una gran proporción de valores cero, con valores distintos de cero mezclados al azar. Las promociones de ventas exitosas, obviamente positivas, tienen un inconveniente: pueden confundir la "señal de demanda" con picos en su historial de demanda y pueden socavar los pronósticos y sesgar los cálculos de existencias de seguridad. Cuando la demanda intermitente y las promociones de ventas efectivas son la fuente de la asimetría de sus datos, existen métodos para solucionar el problema y lograr tasas de cumplimiento más altas y pronósticos de demanda más precisos.

Cómo las promociones aumentan la asimetría

Las promociones exitosas aumentan abruptamente la demanda de artículos. Esto crea anomalías, o "valores atípicos", que contribuyen a formar una distribución sesgada. Sabiendo cuándo ocurrieron promociones en el pasado, podemos ajustar el registro de demanda pasada de un artículo. Producimos un historial de demanda alternativo como si no hubiera habido promociones, reemplazando los valores atípicos con valores más representativos del nivel "natural" de demanda. Estos ajustes reducen la asimetría de la demanda. La reducción del sesgo puede conducir a reducciones significativas tanto en los pronósticos esperados como en las existencias de seguridad, que se suman para formar puntos de pedido.

Es probable que se repitan las promociones exitosas. Cuando eso sucede, los efectos de promoción se pueden agregar a los pronósticos de demanda para aumentar su precisión. El efecto de las futuras promociones en la gestión del inventario será aumentar el riesgo de desabastecimiento, por lo que una respuesta sensata es trabajar a nivel operativo para generar un suministro temporal, en una cantidad ajustada al impacto estimado de las promociones anteriores en los artículos afectados.

 

Uso del modelado de eventos para mejorar la previsión de la demanda

Es posible modelar el impacto de eventos similares y aplicarlo a eventos planificados en el futuro. Si lo hace, puede mejorar su pronóstico de dos maneras importantes: al proyectar la sacudida de la demanda que espera de un evento planificado; y racionalizando los picos en el pasado que fueron causados por eventos, haciendo que su actividad de referencia sea más visible y predecible con mayor precisión. Hacemos mucho de esto en SmartForecasts, así que permítame usar nuestra experiencia allí para mostrarle lo que quiero decir.

El modelado de eventos implica los siguientes pasos:
• Estimación automática del impacto de promociones anteriores (que es un resultado útil en sí mismo).
• Ajuste de la demanda histórica para eliminar estadísticamente el efecto de las promociones.
• Creación de previsiones sin promoción.
• Revisar las previsiones de los períodos de tiempo futuros en los que se prevén promociones.

A este tipo de análisis lo llamamos “pronóstico de promociones”. Usamos la palabra "promociones" para describir lo que hace usted mismo para mejorar sus resultados. Usamos "eventos" para describir lo que el mundo te hace, generalmente en detrimento tuyo; los ejemplos incluyen huelgas, cortes de energía, incendios en almacenes y otros sucesos desafortunados.

Para comprender cómo el modelado de eventos puede ayudarlo a lidiar con la asimetría al hacer pronósticos de demanda para artículos de gran volumen, considere las Figuras 1-3.

La Figura 1 muestra que el patrón de demanda de este artículo es claramente estacional, y el pronóstico es estacional y "ajustado", lo que significa que el intervalo de incertidumbre del pronóstico ("margen de error", que se muestra en líneas cian) es muy estrecho.

La figura 2 muestra una historia alternativa en la que una promoción en junio de 2014 revirtió el mínimo estacional habitual asociado con las ventas de junio. Este patrón de demanda se pronosticó mediante el torneo de pronóstico automático en SmartForecasts, como se muestra en la figura 1. Esta vez, la promoción alteró el patrón estacional lo suficiente como para crear un pronóstico no estacional inapropiado y que tiene un margen de error mucho mayor.

Finalmente, la Figura 3 muestra cómo el pronóstico de promoción maneja el mismo escenario promocionado, conservando un pronóstico estacional e incorporando al pronóstico una estimación del efecto de una promoción repetida planificada en 2015.

El caso de la demanda intermitente

En la Figura 1, el artículo era un bien terminado de gran volumen y la tarea era la previsión de la demanda. El modelado de promociones también es útil cuando se trata de la tarea de establecer existencias de seguridad y puntos de pedido para artículos con demanda intermitente, ya sean productos terminados, componentes o repuestos. La demanda intermitente muy a menudo tiene una distribución sesgada que dificulta lograr una alta disponibilidad de artículos con una pequeña inversión en inventario.

La Figura 4 ilustra el problema que una promoción exitosa puede crear accidentalmente para la gestión de inventario. Si tal aumento surge de la demanda natural no promovida, entonces la única forma de mantener altas tasas de llenado es proporcionar existencias de seguridad lo suficientemente grandes como para hacer frente a estos aumentos repentinos. En este caso, el gran aumento de la demanda de 500 unidades en febrero de 2013 fue el resultado de una promoción única.

Tener en cuenta las promociones para mejorar la gestión de inventario

Sin darse cuenta, tratar el pico en el ejemplo anterior como parte de la variabilidad natural de la demanda da como resultado una tasa de cumplimiento deficiente. Para lograr un nivel de servicio objetivo de, digamos, 95% con un plazo de entrega de un mes, se requeriría un punto de pedido de 38 unidades, calculado como la suma de un pronóstico esperado durante el plazo de entrega de reabastecimiento de un mes de 21 unidades complementado con un inventario de seguridad de 17 unidades. Esta inversión daría como resultado una tasa de llenado decepcionante de solo 36%.

Sin embargo, reconocer que el pico es una promoción única y reemplazar las 500 unidades con 0 obviamente marcaría una gran diferencia. El punto de pedido caería de 38 unidades a 31 (la suma de una demanda esperada de 7 unidades y un stock de seguridad de 24 unidades) y la tasa de llenado aumentaría a 94%.

Por supuesto, no está bien descartar picos de demanda inconvenientes cuando hacen que la vida sea incómoda; tiene que haber una “historia comercial” válida detrás del ajuste de la demanda histórica. Si el pico es el resultado de un error de procesamiento de datos, entonces, por supuesto, arréglelo. Si el pico coincide con una promoción, reemplazar el pico con, digamos, la demanda media (a menudo cero, como en este ejemplo) dará como resultado una inversión en inventario mucho más sostenible que aún cumple con los objetivos de rendimiento agresivos. Las futuras promociones del mismo tipo en el mismo artículo requerirán un esfuerzo adicional para prepararse para el aumento temporal de la demanda, pero el punto de reorden recomendado será correcto a largo plazo.

Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselear y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.

Deja un comentario

Artículos Relacionados

Revela tu política real de planificación y pronóstico de inventario respondiendo estas 10 preguntas

Revela tu política real de planificación y pronóstico de inventario respondiendo estas 10 preguntas

En este blog, revisamos 10 preguntas específicas que puede hacer para descubrir qué está sucediendo realmente con la política de planificación de inventario y previsión de demanda en su empresa. Detallamos las respuestas típicas proporcionadas cuando en realidad no existe una política de previsión/planificación de inventario, explicamos cómo interpretar estas respuestas y ofrecemos algunos consejos claros sobre qué hacer al respecto.

Como gestionar la curva de compensación

Como gestionar la curva de compensación

En el mundo de la planificación de la cadena de suministro, la decisión más fundamental es cómo equilibrar la disponibilidad de artículos con el costo de mantener esa disponibilidad (niveles de servicio y tasas de llenado). En un extremo, puede tener un exceso de existencias y nunca quedarse sin hasta que arruine y tenga que cerrar la tienda para no gastar todo su efectivo en un inventario que no se vende.

¿Teoría del inventario cuántico?

¿Teoría del inventario cuántico?

La física a nivel cuántico es bastante extraña, no se parece en nada a lo que experimentamos en nuestra vida macroscópica habitual. Entre las rarezas están la "superposición", el "enredo" y la "espuma cuántica". Por extraños que sean estos fenómenos, no puedo evitar ver analogías en el mundo supuestamente diferente de la gestión de la cadena de suministro.

Mensajes recientes

  • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
    En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
  • 5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
    La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
  • Dos empleados verifican el inventario en un almacén temporal en un almacén de distribución.12 causas del exceso de stock y soluciones prácticas
    Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
  • Preguntas frecuentes Cómo dominar la gestión inteligente de IP&O para una mejor gestión del inventarioPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
    Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
  • 7 tendencias clave en planificación de la demanda que están dando forma al futuro7 tendencias clave en planificación de la demanda que están dando forma al futuro
    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
      En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
    • Innovando en el mercado de repuestos OEM con optimización de inventario XL impulsada por IAInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
    • Servicios públicos preparados para el futuro. Análisis avanzado para la optimización de la cadena de suministroUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

      Como gestionar la curva de compensación

      El Blog de Smart

       Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      Contra qué nos enfrentamos

      Como fanático de la tercera generación de los Medias Rojas de Boston, no estoy dispuesto a aceptar el consejo de ningún jugador de béisbol de los Yankees de Nueva York, ni siquiera de uno excelente, pero debo admitir que, a veces, solo necesitas tomar una decisión. Sin embargo, ¿no sería mejor si supiéramos las ventajas y desventajas asociadas con cada decisión? Quizás un camino es más pintoresco pero toma más tiempo mientras que el otro es más directo pero aburrido. Entonces no tendría que simplemente "tomarlo", sino que podría tomar una decisión informada basada en las ventajas/desventajas de cada enfoque.

      En el mundo de la planificación de la cadena de suministro, la decisión más fundamental es cómo equilibrar la disponibilidad de artículos con el costo de mantener esa disponibilidad (niveles de servicio y tasas de llenado). En un extremo, puede tener un exceso de existencias y nunca quedarse sin hasta que arruine y tenga que cerrar la tienda para no gastar todo su efectivo en un inventario que no se vende. En el otro extremo, puede tener una gran escasez de existencias y ahorrar un montón en costos de mantenimiento de inventario, pero arruinarse y tener que cerrar la tienda porque todos sus clientes llevaron sus negocios a otra parte.

      No hay escapatoria a esta tensión fundamental. La forma de sobrevivir y prosperar es encontrar un equilibrio productivo y sostenible. Para hacer eso, se requieren compensaciones basadas en hechos basadas en los números. Para obtener los números se requiere software.

      La deriva general de las cosas es obvia. Si decide mantener más inventario, tendrá más costos de mantenimiento, menores costos de escasez y posiblemente menores costos de pedido. Es imposible saber si esto cuesta o ahorra dinero sin un análisis sofisticado, pero generalmente el resultado es que el costo total aumenta. Pero si invierte en más inventario, ganará algo, porque ofrecerá a sus clientes niveles de servicio y tasas de llenado más altos. Cuánto más alto requiere, como puede suponer, un análisis sofisticado.

      Muéstrame los números

      Este blog expone cómo se ve un análisis de este tipo. No existe una solución universal que le indique la decisión "correcta". Puede pensar que la decisión correcta es la que mejor se ajusta a sus resultados. Pero para obtener esos números, necesitaría algo que rara vez se ve: un modelo preciso del comportamiento del cliente con respecto al nivel de servicio (consulte nuestro artículo “Cómo elegir un nivel de servicio objetivo”) Por ejemplo, ¿en qué momento un cliente se irá y llevará su negocio a otra parte? ¿Será después de que agote 1% del tiempo, 5% del tiempo, 10% del tiempo? ¿Seguirá manteniendo su negocio siempre y cuando complete los pedidos rápidamente? ¿Será después de un pedido pendiente de 1 día, 2 días? ¿3 semanas? ¿Será después de que esto suceda una vez en una parte importante o muchas veces en muchas partes? Si bien modelar el nivel de servicio preciso que le permitirá mantener a su cliente mientras minimiza los costos parece un ideal inalcanzable, otro tipo de análisis sofisticado es más pragmático. 

      El software de optimización y pronóstico de inventario puede tener en cuenta todos los costos asociados, como el costo de agotamiento de existencias, el costo de mantener el inventario y el costo de ordenar el inventario para prescribir un objetivo de nivel de servicio óptimo que produzca el costo total más bajo. Sin embargo, incluso ese nivel de servicio "óptimo" es sensible a los cambios en los costos, lo que hace que los resultados sean potencialmente cuestionables. Por ejemplo, si no estima con precisión los costos precisos (los costos de escasez son los más difíciles), será difícil afirmar definitivamente algo como "Si aumento mi inventario disponible en un promedio de una unidad para todos los artículos en un importante familia de productos, mi empresa verá una ganancia neta de $170,500. Esa ganancia aumenta hasta llegar a 4 unidades. A 4 unidades o más, el rendimiento disminuye debido a los excesivos costos de tenencia. Por lo tanto, la mejor decisión al tener en cuenta la retención, el pedido y el agotamiento de existencias proyectados es aumentar el inventario en 3 unidades para ver una ganancia neta de más de $500,000.  

      A falta de ese ideal, puede hacer algo que es más simple pero extremadamente valioso: cuantificar la curva de compensación entre el costo del inventario y la disponibilidad del artículo. Si bien no necesariamente sabrá el nivel de servicio al que debe apuntar, conocerá los costos de los diferentes niveles de servicio. Luego, puede ganar mucho dinero encontrando un buen lugar para estar en esa curva de compensación y comunicando dónde está en riesgo, dónde no, y estableciendo expectativas con los clientes y las partes interesadas internas. Sin la curva de compensación para guiarlo, está volando a ciegas sin forma de modificar racionalmente la política de almacenamiento.

      Un escenario del que aprender

      Esbocemos una curva de compensación realista. Comenzamos con un escenario que requiere una decisión de gestión. El escenario que usaremos y los supuestos asociados sobre la demanda, los plazos de entrega y los costos se detallan a continuación:

      Política de inventario

      • Revisión periódica: reordenar las decisiones tomadas cada 30 días
      • Orden hasta el nivel ("S") - Variado de 30 a 60 unidades
      • Política de escasez: permite pedidos pendientes, sin pedidos perdidos

      Pedir

      • La demanda es intermitente
      • Promedio = 0,8 unidades por día
      • Desviación estándar = 1,2 unidades por día
      • Mayor demanda en un año ≈ 9
      • % de días sin demanda = 53%

      Tiempo de espera

      • Aleatorio a los 7, 14 o 21 días con probabilidades 70%, 20% y 10%, respectivamente

      Parámetros de costo

      • Costo de mantenimiento = $1 por día
      • Costo de pedido = $10 por pedido sin importar el tamaño del pedido
      • Costo de escasez = $100 por unidad que no se envía inmediatamente del stock

      Imaginamos una política de control de inventario que se conoce en el comercio como una política de "revisión periódica" o (T,S). En este caso, el Período de revisión ("T") es de 30 días, lo que significa que cada 30 días se verifica la posición del inventario y se toma una decisión de pedido. La cantidad del pedido es la diferencia entre el número observado de unidades disponibles y la cantidad del pedido hasta el final ("S"). Entonces, si el inventario de fin de mes es de 12 unidades y S = 20, la cantidad del pedido sería S – 12 = 20 -1 2 = 8. El próximo mes, es probable que la cantidad del pedido sea diferente. Si el inventario alguna vez se vuelve negativo (pedidos atrasados) durante un período de revisión, el próximo pedido intenta restaurar el equilibrio ordenando más para llenar esos pedidos atrasados. Por ejemplo, si el inventario es -5 (es decir, 5 unidades ordenadas por no disponibles para envío, el siguiente pedido sería S – (-5) = S + 5. Detalles del flujo de demanda hipotético, plazos de entrega del proveedor y elementos de costo se muestran a continuación en la Figura 1. La Figura 2 muestra una muestra de la demanda diaria y el inventario diario durante cinco períodos de revisión. intermitente, como ocurre a menudo con las piezas de repuesto y, por lo tanto, es difícil planificarlo.

      Figura 1: Diferentes opciones de política de inventario (pedir hasta), costos asociados y niveles de servicio

      Figura 2: Detalle de cinco meses de operación del sistema dada una de las políticas

       

      El software de planificación de inventario es nuestro amigo

      El software codifica la lógica de la operación del sistema (T,S), genera muchos escenarios de demanda hipotéticos pero realistas, calcula cómo se desarrolla cada uno de esos escenarios y luego mira hacia atrás en la operación simulada (aquí, 10 años o 3650 días consecutivos) para calcular las métricas de costo y rendimiento.

      Para revelar la curva de compensación, realizamos varios experimentos computacionales en los que variamos el nivel de pedido hasta el nivel, S. Las gráficas de la Figura 2 muestran el comportamiento del inventario disponible en la alternativa "más rica" con S = 60. En el fragmento que se muestra en la Figura 2, el inventario disponible nunca se acerca a agotarse. Puedes leer eso también. Una, un poco ingenua, es decir “Bien, estamos bien protegidos”. La otra, más agresiva, es decir, “Oh no, estamos hinchados. Me pregunto qué pasaría si redujéramos S.”

      La curva de compensación revelada

      La Figura 3 muestra los resultados de reducir S de 60 a 30 en pasos de 5 unidades. La tabla muestra que el Costo total es la suma del Costo de mantenimiento, el Costo de pedido y el Costo de escasez. Para la póliza (T,S), el costo de pedido es siempre el mismo, ya que un pedido se realiza como un reloj cada 30 días. Pero los otros componentes del costo responden a los cambios en S.

      Figura 3: Los resultados experimentales y la curva de compensación correspondiente que muestra cómo cambiar el nivel de pedido hasta el nivel ("S") afecta tanto el nivel de servicio como el costo anual total

      Tenga en cuenta que el nivel de servicio siempre es más bajo que la tasa de llenado en estos escenarios. Como profesor, siempre pienso en esta diferencia en términos de calificación de exámenes. Cada ciclo de reabastecimiento es como una prueba. El nivel de servicio se trata de la probabilidad de un desabastecimiento, por lo que es como la calificación en el examen de aprobación/reprobación con una pregunta que debe responderse a la perfección. Si no hay desabastecimiento en un ciclo, es una A. Si hay desabastecimiento, es una F. No importa si es una unidad que no se suministra o 50, sigue siendo una F. Pero la tasa de llenado es como una pregunta que se califica con crédito parcial. Por lo tanto, si le falta una de diez unidades, obtiene una tasa de llenado de 90% para ese ciclo, no 0%. Es importante comprender la diferencia entre estas dos métricas importantes para la planificación del inventario: consulte este vlog que describe nivel de servicio frente a tasa de llenado a través de un ejercicio interactivo en Excel.

      La trama en la Figura 3 es la verdadera noticia. Combina el costo total y el nivel de servicio para varios niveles de S. Si lee el gráfico de derecha a izquierda, nos dice que se pueden obtener ahorros de costos drásticos al reducir S con una penalización muy pequeña en términos de disponibilidad reducida de artículos. Por ejemplo, la reducción de S de 60 a 55 ahorra cerca de $800 por año en este artículo, mientras que reduce un poco el nivel de servicio de (esencialmente) 100% a un aún impresionante 99%. Cortar S un poco más hace lo mismo, aunque no tan dramáticamente. Si lee el gráfico de izquierda a derecha, verá que pasar de S = 30 a S = 35 cuesta alrededor de $1000 por año, pero mejora el nivel de servicio de un grado F (45%) a al menos un grado C (71%). Después de eso, empujar S más alto cuesta progresivamente más mientras se gana progresivamente menos.

      La curva de compensación no le da una respuesta sobre cómo establecer el nivel de orden hasta el nivel, pero le permite evaluar los costos y beneficios de cada respuesta posible. Tómese un minuto y finja que este es su problema: ¿Dónde le gustaría estar a lo largo de la curva de compensación?

      Puede objetar y decir que odia sus elecciones y quiere cambiar el juego. ¿Hay escape de la curva? No de la curva general, pero es posible que pueda moldear una curva menos dolorosa. ¿Cómo?

      Puede que tengas otras cartas para jugar. Una vía es tratar de “moldear” la demanda para que sea menos variable. El diagrama de demanda en la Figura 2 muestra mucha variabilidad. Si pudiera suavizar la demanda, toda la curva de compensación se desplazaría hacia abajo, haciendo que cada elección fuera menos costosa. Una segunda vía es tratar de reducir la media y la variabilidad de los plazos de entrega de los proveedores. Lograr cualquiera de los dos también desplazaría la curva hacia abajo para que la elección fuera menos dolorosa. Consulta nuestro artículo sobre cómo los proveedores influyen en sus costos de inventario

      Resumen

      La curva de compensación siempre está con nosotros. A veces podemos hacerlo más amigable, pero siempre elegimos nuestro lugar a lo largo de él. Es mejor saber lo que está obteniendo con cualquier elección de política de inventario que tratar de adivinar, y la curva le da eso. Cuando tiene una estimación precisa de esa curva, ya no está volando a ciegas cuando se trata de la planificación del inventario. 

       

       

       

      Deja un comentario

      Artículos Relacionados

      Pronóstico de la demanda en una empresa de “construcción bajo pedido”

      Pronóstico de la demanda en una empresa de “construcción bajo pedido”

      A menudo entramos en contacto con clientes potenciales que afirman que no pueden utilizar un sistema de previsión, ya que se trata de una operación de fabricación "construida sobre pedido". Encuentro que esta es una perspectiva desconcertante, porque cualquier cosa que construyan estas organizaciones requiere materias primas o bienes intermedios de nivel inferior. Si esas entradas de nivel inferior no están disponibles cuando se recibe un pedido del producto terminado, el pedido no se puede generar. En consecuencia, el pedido podría cancelarse y perderse los ingresos asociados.

      3 tipos de análisis de la cadena de suministro

      3 tipos de análisis de la cadena de suministro

      Los tres tipos de análisis de la cadena de suministro son "descriptivos", "predictivos" y "prescriptivos". Cada uno juega un papel diferente para ayudarlo a administrar su inventario. El software moderno de la cadena de suministro le permite explotar los tres y ayudarlo a reducir los costos de inventario, mejorar los niveles de servicio y entrega a tiempo, mientras ejecuta una cadena de suministro más eficiente.

      Un control sobre la automatización de pronósticos con el índice de atención

      Un control sobre la automatización de pronósticos con el índice de atención

      Una nueva métrica que llamamos "Índice de atención" ayudará a los pronosticadores a identificar situaciones en las que "los datos se comportan mal" pueden distorsionar los pronósticos estadísticos automáticos (ver el poema adyacente). Identifica rápidamente aquellos elementos que probablemente requieran anulaciones de pronósticos, lo que proporciona una forma más eficiente de poner a trabajar la experiencia comercial y otra inteligencia humana para maximizar la precisión de los pronósticos. ¿Como funciona?

      Mensajes recientes

      • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
        En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
      • 5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
        La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
      • Dos empleados verifican el inventario en un almacén temporal en un almacén de distribución.12 causas del exceso de stock y soluciones prácticas
        Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
      • Preguntas frecuentes Cómo dominar la gestión inteligente de IP&O para una mejor gestión del inventarioPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
        Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
      • 7 tendencias clave en planificación de la demanda que están dando forma al futuro7 tendencias clave en planificación de la demanda que están dando forma al futuro
        La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
          En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
        • Innovando en el mercado de repuestos OEM con optimización de inventario XL impulsada por IAInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
          El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
        • Servicios públicos preparados para el futuro. Análisis avanzado para la optimización de la cadena de suministroUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
          Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
        • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
          En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

          Cómo saber si realmente no tiene una política de previsión y planificación de inventario

          El Blog de Smart

           Recomendaciones para la planificación de la demanda,

          previsión y optimización de inventario

          No puede administrar adecuadamente sus niveles de inventario, y mucho menos optimizarlos, si no sabe exactamente cómo son los pronósticos de demanda y los parámetros de almacenamiento (como mínimo/máximo, existencias de seguridad, puntos de reorden y cantidades de pedidos). determinado.

          Muchas organizaciones no pueden especificar cómo se calculan las entradas de la política o identificar situaciones que requieren que la administración anule la política. Por ejemplo, muchas personas pueden decir que confían en un método de planificación particular, como Mín./Máx., punto de reorden o previsión con stock de seguridad, pero no pueden decir exactamente cómo se calculan estas entradas de planificación. Más fundamentalmente, es posible que no entiendan qué sucedería con sus KPI si cambiaran el inventario mínimo, máximo o de seguridad. Es posible que sepan que el pronóstico se basa en "promedios", "historial" o "ingresos de ventas", pero los detalles específicos sobre cómo se llega al pronóstico final no están claros.

          Con bastante frecuencia, la lógica de planificación y pronóstico del inventario de una empresa fue desarrollada por un ex empleado o un consultor desaparecido y sepultada en una hoja de cálculo. De lo contrario, puede depender de una funcionalidad de ERP obsoleta o de una personalización de ERP por parte de una organización de TI que asumió incorrectamente que el software de ERP puede y debe hacer todo. (Lea este gran y, como dicen, "gracioso porque es verdad", blog de Shaun Snapp sobre Estrategias centradas en ERP.) Es posible que la política no se haya documentado correctamente, y nadie en el trabajo actual puede mejorarla o utilizarla de la mejor manera.

          Esta desafortunada situación conduce a otra, en la que los compradores y los planificadores de inventario ignoran por completo el resultado del sistema ERP, lo que obliga a depender de Microsoft Excel para determinar los programas de pedidos. Se desarrollan métodos ad hoc que impiden respuestas cohesivas a problemas operativos y no son visibles para el resto de la organización (a menos que desee que su CFO aprenda la hoja de cálculo compleja y meticulosa). Estos métodos a menudo se basan en Reglas de juego, técnicas de promediación o estadísticas de libros de texto sin una comprensión completa de sus deficiencias o aplicabilidad. E incluso cuando están documentados, la mayoría de las empresas a menudo descubren que los pedidos reales se desvían de la política documentada. ¡Una empresa a la que consultamos tenía niveles de inventario disponibles que eran rutinariamente el doble de la cantidad máxima! En otras palabras, no hay realmente una política en absoluto.

          En resumen, muchos “sistemas” actuales de previsión de inventario y demanda se desarrollaron debido a la desconfianza hacia las sugerencias del sistema anterior, pero en realidad no mejoran los KPI. También obligan a la organización a depender de unos pocos empleados para gestionar la previsión de la demanda, los pedidos diarios y la reposición de inventario.

          Y cuando hay un problema, es imposible que el equipo ejecutivo resuelva cómo llegó allí, porque hay demasiadas partes móviles. Por ejemplo, ¿fue el exceso de existencias la culpa de un pronóstico de demanda inexacto que se basó en un método de promedio que no tuvo en cuenta una demanda decreciente? ¿O se debió a una configuración de tiempo de entrega obsoleta que era más alta de lo que debería haber sido? ¿O se debió a una anulación del pronóstico que hizo un planificador para dar cuenta de un pedido que simplemente nunca sucedió? ¿Y quién dio la retroalimentación para hacer esa anulación? ¿Un cliente? vendedor?

          ¿Tienes alguno de estos problemas? Si es así, está desperdiciando cientos de miles a millones de dólares cada año en costos innecesarios de escasez, costos de almacenamiento y costos de pedido. ¿Qué podrías hacer con ese dinero extra? Imagina el impacto que esto tendría en tu negocio.

          Este Blog detalla las 10 preguntas principales que puede hacer para descubrir lo que realmente está sucediendo en su empresa. Detallamos las respuestas típicas proporcionadas cuando en realidad no existe una política de previsión/planificación de inventario, explicamos cómo interpretar estas respuestas y ofrecemos algunos consejos claros sobre qué hacer al respecto.

           

          Deja un comentario

          Artículos Relacionados

          Pronóstico de la demanda en una empresa de “construcción bajo pedido”

          Pronóstico de la demanda en una empresa de “construcción bajo pedido”

          A menudo entramos en contacto con clientes potenciales que afirman que no pueden utilizar un sistema de previsión, ya que se trata de una operación de fabricación "construida sobre pedido". Encuentro que esta es una perspectiva desconcertante, porque cualquier cosa que construyan estas organizaciones requiere materias primas o bienes intermedios de nivel inferior. Si esas entradas de nivel inferior no están disponibles cuando se recibe un pedido del producto terminado, el pedido no se puede generar. En consecuencia, el pedido podría cancelarse y perderse los ingresos asociados.

          3 tipos de análisis de la cadena de suministro

          3 tipos de análisis de la cadena de suministro

          Los tres tipos de análisis de la cadena de suministro son "descriptivos", "predictivos" y "prescriptivos". Cada uno juega un papel diferente para ayudarlo a administrar su inventario. El software moderno de la cadena de suministro le permite explotar los tres y ayudarlo a reducir los costos de inventario, mejorar los niveles de servicio y entrega a tiempo, mientras ejecuta una cadena de suministro más eficiente.

          Un control sobre la automatización de pronósticos con el índice de atención

          Un control sobre la automatización de pronósticos con el índice de atención

          Una nueva métrica que llamamos "Índice de atención" ayudará a los pronosticadores a identificar situaciones en las que "los datos se comportan mal" pueden distorsionar los pronósticos estadísticos automáticos (ver el poema adyacente). Identifica rápidamente aquellos elementos que probablemente requieran anulaciones de pronósticos, lo que proporciona una forma más eficiente de poner a trabajar la experiencia comercial y otra inteligencia humana para maximizar la precisión de los pronósticos. ¿Como funciona?

          Mensajes recientes

          • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
            En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
          • 5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
            La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
          • Dos empleados verifican el inventario en un almacén temporal en un almacén de distribución.12 causas del exceso de stock y soluciones prácticas
            Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
          • Preguntas frecuentes Cómo dominar la gestión inteligente de IP&O para una mejor gestión del inventarioPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
            Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
          • 7 tendencias clave en planificación de la demanda que están dando forma al futuro7 tendencias clave en planificación de la demanda que están dando forma al futuro
            La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

            Optimización de inventario para fabricantes, distribuidores y MRO

            • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
              En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
            • Innovando en el mercado de repuestos OEM con optimización de inventario XL impulsada por IAInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
              El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
            • Servicios públicos preparados para el futuro. Análisis avanzado para la optimización de la cadena de suministroUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
              Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
            • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
              En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

              El vicepresidente de investigación de Smart Software presentará en ISF 2018
              El Dr. Tom Willemain dirigirá la sesión de la ISF sobre desagregación de series temporales Belmont, Massachusetts, 14 de mayo de 2018 – Smart Software, Inc., provider of industry-leading demand forecasting, planning, and inventory optimization solutions, today announced that Tom Willemain, vice president for research, will present at the International Symposium of Forecasting from June 17 – 20 in Boulder, CO. Dr. Willemain, will present a tutorial on Time Series Dissaggregation and how the approaches he’ll outline can improve the quality of demand forecasts.  Imagine that you must provide daily forecast results but can only obtain historical demand at monthly or weekly levels.   Often times, granular demand data is not available.  How do you proceed?  Converting aggregate quarterly, monthly, or weekly data to daily data is example of the time series dissaggregation problem. Dr. Willemain will discuss current solutions to this problem and press an improved solution. As the premier, international forecasting conference, the ISF provides the opportunity to interact with the world’s leading forecasting researchers and practitioners. The attendance is large enough so that the best in the field are attracted, yet small enough that you are able to meet and discuss one-on-one. The ISF offers a variety of networking opportunities, through keynote speaker presentations, academic sessions, workshops, meals, and social programs. In addition, representatives of leading publishing, software, and other related companies are on hand to discuss their most recent offerings. Acerca del Dr. Thomas Willemain El Dr. Thomas Reed Willemain se desempeñó como consultor experto en estadística de la Agencia de Seguridad Nacional (NSA) en Ft. Meade, MD y como miembro del personal de investigación adjunto en un grupo de expertos afiliado, el Instituto para el Centro de Análisis de Defensa para las Ciencias de la Computación (IDA/CCS). Es profesor emérito de ingeniería industrial y de sistemas en el Instituto Politécnico Rensselaer, y anteriormente ocupó cargos docentes en la Escuela de Gobierno Kennedy de Harvard y el Instituto de Tecnología de Massachusetts. También es cofundador y vicepresidente sénior/investigación de Smart Software, Inc. Es miembro de la Asociación de ex oficiales de inteligencia, la Sociedad de investigación de operaciones militares, la Asociación estadounidense de estadística y varias otras organizaciones profesionales. Willemain recibió el título de BSE (summa cum laude, Phi Beta Kappa) de la Universidad de Princeton y los títulos de maestría y doctorado del Instituto de Tecnología de Massachusetts. Sus otros libros incluyen: Métodos estadísticos para planificadores, Análisis de sistemas médicos de emergencia (con RC Larson) y 80 artículos en revistas revisadas por pares sobre temas de estadística, investigación de operaciones, atención médica y otros temas. Para obtener más información, envíe un correo electrónico a: TomW@SmartCorp.com o visite www.TomWillemain.com. Acerca de Smart Software, Inc. Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y pronóstico de demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Mitsubishi, Siemens, Disney, FedEx, MARS y The Home Depot. La planificación y optimización inteligente del inventario brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts y se puede encontrar en www.smartcorp.com SmartForecasts es una marca comercial registrada de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.
              Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478. Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com
              Pronósticos y la marea creciente de Big Data

              El Blog de Smart

               Recomendaciones para la planificación de la demanda,

              previsión y optimización de inventario

              "Billones de registros de millones de personas... Encontrar la información útil y correcta, comprender su calidad y producir datos analizados confiables de manera oportuna y rentable son cuestiones críticas".

              El vicepresidente sénior de investigación de Smart Software, Tom Willemain, tuvo recientemente la oportunidad de hablar con el Dr. Mohsen Hamoudia, presidente de la Instituto Internacional de Pronosticadores (IIF), para discutir problemas actuales y oportunidades para el análisis de big data. El IIF informa a los profesionales sobre tendencias y desarrollos de investigación en pronósticos a través de publicaciones impresas y en línea y la celebración de conferencias profesionales.

              El Dr. Hamoudia comienza, a modo de introducción:

              En todas las industrias, la disponibilidad de datos se está disparando en volumen, variedad y velocidad. El análisis de big data está jugando un papel importante en la identificación de los datos que son más importantes para el negocio.

              Permítanme tomar el ejemplo del sector de las Tecnologías de la Información y la Comunicación (TIC). Estamos viendo un crecimiento literalmente exponencial en la cantidad de datos disponibles para las telecomunicaciones, los distribuidores de contenido independientes Over-the-top (OTT), el gobierno, los reguladores y otras organizaciones.

              En todo el mundo, somos testigos de petabytes de datos: billones de registros de millones de personas, todos provenientes de múltiples fuentes. Entre estas fuentes: conexiones a Internet, ventas, centros de atención al cliente, redes sociales, datos de teléfonos fijos y móviles. Encontrar la información útil y correcta, comprender su calidad y producir datos analizados confiables de manera oportuna y rentable son cuestiones críticas. Las empresas de TIC buscan cada vez más información procesable en sus datos. ¿Cómo pueden aumentar su base de clientes y sus programas de fidelización? ¿Cómo pueden mejorar la calidad del servicio (QoS) y reducir la rotación de clientes? Con las plataformas de análisis de big data adecuadas, pueden ser más competitivos y eficientes, mejorando las operaciones, el servicio al cliente y la gestión de riesgos. Pronosticar y predecir las tendencias y direcciones de los clientes es clave para las telecomunicaciones.

              Las habilidades de pronóstico, incluidas las matemáticas, las estadísticas y la econometría, forman uno de los "bloques" más importantes de habilidades requeridas en la gestión de Big Data. Algunas actividades de pronóstico forman naturalmente parte del debate de los grandes datos.

              En las industrias minoristas, las direcciones de previsión diarias pedir a través de miles de productos. La previsión financiera, ya sea considerando el comportamiento del cliente o series de datos financieros, genera conjuntos masivos de datos en línea. Como señaló Robert Fildes, profesor distinguido de la Universidad de Lancaster, hasta el momento la comunidad académica de pronósticos no está completamente involucrada, con solo unas pocas excepciones. Hal Varian de Google analizó parte del trabajo que David Hendry y Jennifer Castle, en la Universidad de Oxford, han realizado en la búsqueda de grandes conjuntos de datos para modelos significativos congruentes con los datos. Stock y Watson también han desarrollado sus propios enfoques para grandes conjuntos de macrodatos. Pero a pesar del intento, en el simposio del año pasado sobre pronóstico en Seúl, de explorar el tema de los grandes datos y sus aplicaciones de pronóstico, quedan pocas aplicaciones convincentes del uso de datos en línea en problemas reales de pronóstico.

              P. En la actualidad, se habla mucho de "análisis predictivo", pero la frase rara vez se relaciona con la previsión. ¿Está de acuerdo en que la previsión se encuentra en el corazón del análisis predictivo? ¿Tiene alguna explicación de por qué se ha roto el enlace? ¿Tiene ideas sobre cómo reinyectar pronósticos en la conversación?

              Los resultados de la previsión (el “qué”) quizás ahora se perciban como menos importantes que el “cómo”. En consecuencia, la confianza que los usuarios otorgan a la previsión tradicional ha disminuido. ¿Quién de hecho cuestiona la precisión o la relevancia de los pronósticos al comparar, a posteriori, la realidad con el pronóstico, defendiendo la efectividad de los metododiges y, por lo tanto, generando credibilidad?

              Con la percepción actual de "análisis predictivo", probablemente haya más espacio en la imaginación del público asignado al lado "cómo" de las cosas y, por lo tanto, una historia más creíble para contar a los socios, inversores o clientes.

              P. Parece que casi no hay vínculo entre el pronóstico tradicional y la tecnología móvil (teléfonos inteligentes, tabletas). ¿Es esto cierto o algunas empresas están migrando la previsión a dispositivos móviles? ¿Ve un camino a seguir en el que los algoritmos de pronóstico tradicionales residirían de forma rutinaria en los dispositivos móviles?

              En primer lugar, estoy realmente encantado de invitar a sus lectores a echar un vistazo a nuestro último número de Foresight. Un excelente artículo sobre el tema, "Pronósticos en el bolsillo: los dispositivos móviles pueden mejorar la colaboración", explica que "la creciente popularidad de las PDA, los teléfonos inteligentes, las tabletas y otros dispositivos móviles abre nuevas oportunidades para la comunicación y la colaboración en los pronósticos comerciales". Los autores nos dicen que "las aplicaciones móviles de pronóstico (m-forecasting) pueden simplificar los enfoques de colaboración entre minoristas y proveedores, contribuyendo así al suministro e intercambio de información sobre productos, especialmente porque los pronósticos están fuertemente vinculados al conocimiento del contexto local".

              Por ejemplo, en el lado de las TIC y OTT, una gran cantidad de proyectos predictivos, como los de Google+ y Facebook, están sucediendo gracias a la inclusión de los datos de "ubicación del usuario" en los sistemas de TI de OTT. En mi opinión, y lo que veo en algunos sectores como retail y logística, es que la previsión tradicional y la previsión móvil (m-forecasting) son complementarias. Este último podría verse como un enfoque de pronóstico de abajo hacia arriba que confirmará o no los resultados del pronóstico de arriba hacia abajo.

              P. Algunas personas argumentan que los macrodatos facilitarán el reemplazo de los pronósticos por sistemas de “detectar y reaccionar”. Hablando en términos prácticos, ¿cómo explicaría "sentir y reaccionar"? ¿Hay áreas de aplicación en las que cree que es probable que se afiance o no?

              Me parece que “sentir y reaccionar” está completamente orientado a la perspectiva de corto plazo. El pronóstico amplía esto al abordar las necesidades para un horizonte variable: corto y mediano plazo.

              Como efecto colateral de ATAWAD (Anytime, Anywhere, Any Device), los criterios de toma de decisiones son, más que nunca, “a corto plazo”. Big data es un sistema de detección de "señales débiles", que permite la detección casi en tiempo real de oportunidades comerciales que pasarían desapercibidas con los sistemas de TI tradicionales. Realmente no hay aplicaciones preferidas o no prioritarias para esto, la pregunta está más en el lado de "cuándo".

              Big data es relevante cuando se mira debajo de la superficie en tiempos económicos difíciles, pero no estoy tan seguro de si vale la pena el esfuerzo en un período económico "normal". Para concluir sobre este punto: me complacerá ver un ejemplo de cuán precisos son los pronósticos que se basan en "sentir y reaccionar" frente a los pronósticos basados en modelos tradicionales.

              P. Estoy haciendo algunas preguntas importantes. ¿Hasta qué punto ve que la comunidad de IIF da forma a estas discusiones y resultados? ¿Cómo pueden los lectores unirse al diálogo?

              Esperamos una mayor disponibilidad y un mayor uso de una gran cantidad de datos en muchas industrias, como la energía, el transporte, la atención médica, las finanzas, las telecomunicaciones y el turismo.

              Muchos de los miembros del IIF están involucrados en diferentes aspectos del “movimiento” de big data. El IIF está trabajando en las actividades de pronóstico que, naturalmente, forman parte del debate sobre los grandes datos. En términos más generales, el IIF está participando activamente y brindando un foro para la discusión de pronósticos en el resto del mundo.

              El tema de nuestro último Simposio Internacional sobre Pronósticos (ISF) celebrado en Seúl fue "Pronósticos con Big Data" y algunas presentaciones estuvieron relacionadas con la atención médica y las telecomunicaciones. El Banco Central Europeo (BCE) acaba de organizar un taller relevante. Si estos modelos se capitalizan, tienen el potencial de impactar la política económica de Europa con bastante rapidez.

              Los lectores pueden unirse al diálogo contribuyendo con artículos para las publicaciones del IIF (The International Journal of Forecasting, Foresight and El oráculo). La previsión, por su parte, es una voz invaluable para reunir a académicos y profesionales en una discusión en curso.

              Los lectores también pueden presentar trabajos en la conferencia anual (la mencionada ISF). También pueden sugerir y organizar talleres específicos para aplicaciones específicas de big data, como el que acaba de organizar el BCE en Frankfurt. Otra oportunidad es invitar a los miembros de IIF a asistir a cualquier reunión relacionada con el pronóstico con big data. Todas estas oportunidades forman buenas plataformas para establecer contactos y trabajar juntos.

              Mohsen Hamoudia, PhD, es el presidente del Instituto Internacional de Pronosticadores. También se desempeña como Jefe de Estrategia para Grandes Proyectos (París) para Orange Business Services (la antigua France Telecom).

              Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselear, y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.

              Deja un comentario

              Artículos Relacionados

              Un control sobre la automatización de pronósticos con el índice de atención

              Un control sobre la automatización de pronósticos con el índice de atención

              Una nueva métrica que llamamos "Índice de atención" ayudará a los pronosticadores a identificar situaciones en las que "los datos se comportan mal" pueden distorsionar los pronósticos estadísticos automáticos (ver el poema adyacente). Identifica rápidamente aquellos elementos que probablemente requieran anulaciones de pronósticos, lo que proporciona una forma más eficiente de poner a trabajar la experiencia comercial y otra inteligencia humana para maximizar la precisión de los pronósticos. ¿Como funciona?

              Manejo de la variabilidad extrema de la cadena de suministro en Rev-A-Shelf

              Manejo de la variabilidad extrema de la cadena de suministro en Rev-A-Shelf

              ¿Su cadena de suministro extendida sufre de una extrema variabilidad estacional? ¿Esta situación desafía su capacidad para cumplir con los compromisos de nivel de servicio con sus clientes? He lidiado con esto en Rev-A-Shelf, abordando condiciones inusuales creadas por el Año Nuevo chino y otros eventos globales, y me gustaría compartir la experiencia y algunas cosas que aprendí en el camino.

              Recurso recomendado: 'Pronóstico práctico de series de tiempo: una guía práctica', por Galit Schmueli

              Recurso recomendado: 'Pronóstico práctico de series de tiempo: una guía práctica', por Galit Schmueli

              Un libro de texto legible y bien organizado podría ser invaluable para "ayudar a los pronosticadores corporativos en formación a comprender los conceptos básicos del pronóstico de series de tiempo", como señala Tom Willemain en la conclusión de esta revisión, publicada originalmente en Foresight: The International Journal of Applied Forecasting . Escrita principalmente para una audiencia académica, la revisión también sirve a profesionales sin experiencia en planificación de la demanda al indicarles un recurso detallado.

              Mensajes recientes

              • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
                En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
              • 5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
                La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
              • Dos empleados verifican el inventario en un almacén temporal en un almacén de distribución.12 causas del exceso de stock y soluciones prácticas
                Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
              • Preguntas frecuentes Cómo dominar la gestión inteligente de IP&O para una mejor gestión del inventarioPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
                Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
              • 7 tendencias clave en planificación de la demanda que están dando forma al futuro7 tendencias clave en planificación de la demanda que están dando forma al futuro
                La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

                Optimización de inventario para fabricantes, distribuidores y MRO

                • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
                  En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
                • Innovando en el mercado de repuestos OEM con optimización de inventario XL impulsada por IAInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
                  El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
                • Servicios públicos preparados para el futuro. Análisis avanzado para la optimización de la cadena de suministroUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
                  Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
                • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
                  En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]