Muchos de nuestros clientes que vieron cómo la demanda se agotaba durante la pandemia ahora ven que la demanda regresa. Algunos están viendo un aumento significativo de la demanda. Otros clientes en industrias críticas como los plásticos, la biotecnología, los semiconductores y la electrónica vieron aumentos repentinos de la demanda desde abril pasado. Para obtener sugerencias sobre cómo hacer frente a estas situaciones, siga leyendo.
El aumento de la demanda suele crear dos problemas: la incapacidad para cumplir con los pedidos y la incapacidad para reabastecerse debido a la sobrecarga de proveedores. Esta situación requiere cambios en la forma en que utiliza su software de planificación avanzada. Aquí hay tres consejos para ayudarle a sobrellevar la situación.
Consejo #1: reduzca su enfoque temporal
En tiempos normales (¿los recuerdas?), más datos implicaban mejores resultados. Hoy en día, los datos antiguos envenenan tus cálculos, ya que representan condiciones que ya no se aplican. Debe basar las previsiones y otros cálculos en datos de la situación actual. Dónde cortar los datos anteriores puede ser obvio a partir de un gráfico de los datos, o puede decidir establecer una fecha de corte "razonable" basada en un consenso de colegas. Smart Software ha desarrollado algoritmos de aprendizaje automático que identifican automáticamente la cantidad de datos históricos que se deben alimentar de manera óptima al modelo de pronóstico. Esté atento a estas mejoras en el software que se implementarán pronto. Mientras tanto, realice pruebas de precisión utilizando datos reales retenidos utilizando diferentes fechas de inicio históricas. La función de pronóstico vs. real de Smart admitirá esto automáticamente.
Consejo #2: Aumente el ritmo de su planificación
Cuando las operaciones son estables, puede establecer sus políticas de inventario y confiar en que serán adecuadas durante mucho tiempo. Cuando los tiempos son turbulentos, es importante aumentar la frecuencia de sus ciclos de planificación para evitar que la configuración de políticas anterior se aleje demasiado de la óptima. Recalibración más frecuente de sus políticas de almacenamiento y los pronósticos significan que será más rápido para captar las tendencias que sorprenderán a su competencia y lo mantendrán siempre un paso por delante. Con un software capaz de seleccionar automáticamente los valores óptimos, el software puede realizar todo ese trabajo de una sola vez. Debe revisar esos cambios y posiblemente modificarlos, pero tiene sentido dejar que el software haga la mayor parte del trabajo.
Sugerencia #3: haga más planificación hipotética
En tiempos turbulentos, es posible que espere aún más turbulencias en el futuro. El uso de su software para la planificación hipotética lo ayuda a prepararse para los cambios que se avecinan. Por ejemplo, suponga que ha estado en contacto con un proveedor clave que insinúa que puede estar subiendo los precios o que puede tener que retrasar los plazos de entrega. Al alimentar el software con diferentes entradas, puede hacer una planificación de contingencia. Si los precios suben, puede ver cómo responder cambiando las cantidades de los pedidos afectaría sus costos operativos de inventario y su inversión en inventario. Si aumentan los plazos de entrega, puede ver cuál sería el impacto en la disponibilidad del artículo. Este conocimiento previo lo ayuda a descubrir cuáles serían sus contraataques antes de que llegue la crisis.
Si alguna vez hubo un momento en el que pudimos navegar con el piloto automático, es en el espejo retrovisor. Su organización, que se enfrenta a un crecimiento explosivo, tiene muchos desafíos. Las respuestas antiguas están obsoletas; las nuevas respuestas tienen que venir de alguna parte, rápido. Software avanzado que aprovecha de pronóstico probabilístico puede ayudar, junto con cambios en los procesos de planificación.
Artículos Relacionados

Smart Software anuncia patente de próxima generación
Smart Software se complace en anunciar la concesión de la patente estadounidense 11.656.887. La patente dirige “soluciones técnicas para analizar datos históricos de demanda de recursos en una plataforma tecnológica para facilitar la gestión de un proceso automatizado en la plataforma.

¿Sus pronósticos estadísticos sufren el efecto de oscilación?
¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

Cómo manejar pronósticos estadísticos de cero
Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero?