En mi publicación anterior de esta serie sobre conceptos esenciales, “¿Qué es 'Un buen pronóstico'”, discutí el esfuerzo básico para descubrir el futuro más probable en un escenario de planificación de la demanda. Definí un buen pronóstico como aquel que es imparcial y lo más preciso posible. Pero también advertí que, dependiendo de la estabilidad o volatilidad de los datos con los que tenemos que trabajar, aún puede haber alguna inexactitud incluso en un buen pronóstico. La clave es tener una comprensión de cuánto.
Este tema, la gestión de la incertidumbre, es el tema de la publicación de mi colega Tom Willemain, “El promedio no es la respuesta”. Su publicación establece la teoría para enfrentar responsablemente los límites de nuestra capacidad predictiva. Es importante entender cómo funciona esto realmente.
Como mencioné brevemente al final de mi publicación anterior, nuestro enfoque comienza con algo llamado "simulación deslizante". Estimamos con qué precisión predecimos el futuro utilizando nuestras técnicas de pronóstico en una parte más antigua de la historia, excluyendo los datos más recientes. Luego podemos comparar lo que hubiéramos predicho para el pasado reciente con nuestra información real del mundo real sobre lo que sucedió. Este es un método confiable para estimar qué tan cerca estamos prediciendo la demanda futura.
El inventario de seguridad, un amortiguador cuidadosamente medido en el nivel de inventario que almacenamos por encima de nuestra predicción de la demanda más probable, se deriva de la estimación del error de pronóstico que surge de la "simulación deslizante". Este enfoque para lidiar con la precisión de nuestros pronósticos se equilibra de manera eficiente entre ignorar la amenaza de la sobrecompensación impredecible y costosa.
En detalles más técnicos: los errores de pronóstico que se estiman mediante este proceso de simulación deslizante indican el nivel de incertidumbre. Usamos estos errores para estimar la desviación estándar de los pronósticos. Ahora, con una demanda regular, podemos suponer que los pronósticos (que son estimaciones del comportamiento futuro) están mejor representados por una distribución de probabilidad en forma de campana, lo que los estadísticos llaman la "distribución normal". El centro de esa distribución es nuestro pronóstico puntual. El ancho de esa distribución es la desviación estándar del pronóstico de "simulación deslizante" de los valores reales conocidos; lo obtenemos directamente de nuestras estimaciones de error de pronóstico.
Una vez que conocemos la curva específica en forma de campana asociada con el pronóstico, podemos estimar fácilmente la reserva de existencias de seguridad que se necesita. La única entrada nuestra es el "nivel de servicio" que se desea, y se puede determinar el stock de seguridad en ese nivel de servicio. (El nivel de servicio es esencialmente una medida de la confianza que debemos tener en nuestros niveles de existencias de inventario, con una confianza cada vez mayor que requiere los gastos correspondientes en inventario adicional). Tenga en cuenta que estamos asumiendo que la distribución correcta a usar es la distribución normal. Esto es correcto para la mayoría de las series de demanda en las que tiene una demanda regular por período. Falla cuando la demanda es esporádica o intermitente.
En el próximo artículo de esta serie, analizaré cómo Smart Forecasts trata la estimación del stock de seguridad en aquellos casos de demanda intermitente, cuando la suposición de normalidad es incorrecta.
Nelson Hartunian, PhD, cofundó Smart Software, anteriormente se desempeñó como presidente y actualmente lo supervisa como presidente de la junta. Ha dirigido, en varias ocasiones, el desarrollo de software, las ventas y el servicio al cliente.
Artículos Relacionados

Necesitas formar equipo con los algoritmos
This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software.

Repensar la precisión del pronóstico: un cambio de la precisión a las métricas de error
Sin lugar a dudas, medir la precisión de los pronósticos es una parte importante del proceso de planificación de la demanda. Este cuadro de mando de pronóstico podría construirse basándose en uno de dos puntos de vista contrastantes para calcular métricas. El punto de vista del error pregunta: "¿a qué distancia estaba el pronóstico de lo real?" El punto de vista de la precisión pregunta: "¿Qué tan cerca estuvo el pronóstico de lo real?" Ambas son válidas, pero las métricas de error proporcionan más información.

Cada modelo de pronóstico es bueno para lo que está diseñado
Con tanto entusiasmo en torno al nuevo aprendizaje automático (ML) y los métodos de pronóstico probabilístico, los métodos tradicionales de pronóstico estadístico “extrapolativo” o de “series de tiempo” parecen estar recibiendo la espalda. Sin embargo, vale la pena recordar que estas técnicas tradicionales (como el suavizado exponencial simple y doble, los promedios móviles lineales y simples y los modelos de Winters para artículos estacionales) a menudo funcionan bastante bien para datos de mayor volumen. Cada método es bueno para lo que fue diseñado. Simplemente aplique cada uno de manera apropiada, como por ejemplo, no lleve un cuchillo a un tiroteo y no use un martillo neumático cuando un simple martillo de mano será suficiente.