El Blog de Smart

Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

En mi publicación anterior de esta serie sobre conceptos esenciales, “¿Qué es 'Un buen pronóstico'”, discutí el esfuerzo básico para descubrir el futuro más probable en un escenario de planificación de la demanda. Definí un buen pronóstico como aquel que es imparcial y lo más preciso posible. Pero también advertí que, dependiendo de la estabilidad o volatilidad de los datos con los que tenemos que trabajar, aún puede haber alguna inexactitud incluso en un buen pronóstico. La clave es tener una comprensión de cuánto.

Este tema, la gestión de la incertidumbre, es el tema de la publicación de mi colega Tom Willemain, “El promedio no es la respuesta”. Su publicación establece la teoría para enfrentar responsablemente los límites de nuestra capacidad predictiva. Es importante entender cómo funciona esto realmente.

Como mencioné brevemente al final de mi publicación anterior, nuestro enfoque comienza con algo llamado "simulación deslizante". Estimamos con qué precisión predecimos el futuro utilizando nuestras técnicas de pronóstico en una parte más antigua de la historia, excluyendo los datos más recientes. Luego podemos comparar lo que hubiéramos predicho para el pasado reciente con nuestra información real del mundo real sobre lo que sucedió. Este es un método confiable para estimar qué tan cerca estamos prediciendo la demanda futura.

El inventario de seguridad, un amortiguador cuidadosamente medido en el nivel de inventario que almacenamos por encima de nuestra predicción de la demanda más probable, se deriva de la estimación del error de pronóstico que surge de la "simulación deslizante". Este enfoque para lidiar con la precisión de nuestros pronósticos se equilibra de manera eficiente entre ignorar la amenaza de la sobrecompensación impredecible y costosa.

En detalles más técnicos: los errores de pronóstico que se estiman mediante este proceso de simulación deslizante indican el nivel de incertidumbre. Usamos estos errores para estimar la desviación estándar de los pronósticos. Ahora, con una demanda regular, podemos suponer que los pronósticos (que son estimaciones del comportamiento futuro) están mejor representados por una distribución de probabilidad en forma de campana, lo que los estadísticos llaman la "distribución normal". El centro de esa distribución es nuestro pronóstico puntual. El ancho de esa distribución es la desviación estándar del pronóstico de "simulación deslizante" de los valores reales conocidos; lo obtenemos directamente de nuestras estimaciones de error de pronóstico.

Una vez que conocemos la curva específica en forma de campana asociada con el pronóstico, podemos estimar fácilmente la reserva de existencias de seguridad que se necesita. La única entrada nuestra es el "nivel de servicio" que se desea, y se puede determinar el stock de seguridad en ese nivel de servicio. (El nivel de servicio es esencialmente una medida de la confianza que debemos tener en nuestros niveles de existencias de inventario, con una confianza cada vez mayor que requiere los gastos correspondientes en inventario adicional). Tenga en cuenta que estamos asumiendo que la distribución correcta a usar es la distribución normal. Esto es correcto para la mayoría de las series de demanda en las que tiene una demanda regular por período. Falla cuando la demanda es esporádica o intermitente.

En el próximo artículo de esta serie, analizaré cómo Smart Forecasts trata la estimación del stock de seguridad en aquellos casos de demanda intermitente, cuando la suposición de normalidad es incorrecta.

Nelson Hartunian, PhD, cofundó Smart Software, anteriormente se desempeñó como presidente y actualmente lo supervisa como presidente de la junta. Ha dirigido, en varias ocasiones, el desarrollo de software, las ventas y el servicio al cliente.

Deja un comentario

Artículos Relacionados

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

¿Cuánto tiempo se debe tomar para calcular los pronósticos estadísticos?

¿Cuánto tiempo se debe tomar para calcular los pronósticos estadísticos?

¿Cuánto tiempo debe tomar para calcular un pronóstico de demanda usando métodos estadísticos? Esta pregunta la hacen a menudo los clientes actuales y potenciales. La respuesta realmente depende. Los resultados del pronóstico para un solo elemento se pueden calcular en un abrir y cerrar de ojos, en tan solo unas pocas centésimas de segundo, pero a veces pueden requerir hasta cinco segundos. Para comprender las diferencias, es importante entender que hay más cosas involucradas que solo repasar la aritmética del pronóstico en sí. Aquí hay seis factores que influyen en la velocidad de su motor de pronóstico.

Mensajes recientes

  • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
    La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]
  • Implementación de software de planificación de demanda y optimización de inventario con los datos correctosImplementación de software de planificación de demanda y optimización de inventario con los datos correctos
    La verificación y validación de datos son esenciales para el éxito de la implementación de software que realiza análisis estadísticos de datos, como Smart IP&O. Este artículo describe el problema y sirve como una guía práctica para hacer el trabajo correctamente, especialmente para el usuario de la nueva aplicación. […]
  • ¿Sus pronósticos estadísticos sufren el efecto de oscilación?¿Sus pronósticos estadísticos sufren el efecto de oscilación?
    ¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema: […]
  • Transformaciones digitales para servicios públicos que impulsarán el rendimiento de MRO7 transformaciones digitales para servicios públicos que impulsarán el rendimiento de MRO
    Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
  • Los principales factores que influyen en la velocidad de su motor de pronóstico¿Cuánto tiempo se debe tomar para calcular los pronósticos estadísticos?
    ¿Cuánto tiempo debe tomar para calcular un pronóstico de demanda usando métodos estadísticos? Esta pregunta la hacen a menudo los clientes actuales y potenciales. La respuesta realmente depende. Los resultados del pronóstico para un solo elemento se pueden calcular en un abrir y cerrar de ojos, en tan solo unas pocas centésimas de segundo, pero a veces pueden requerir hasta cinco segundos. Para comprender las diferencias, es importante entender que hay más cosas involucradas que solo repasar la aritmética del pronóstico en sí. Aquí hay seis factores que influyen en la velocidad de su motor de pronóstico. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
      La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]
    • Transformaciones digitales para servicios públicos que impulsarán el rendimiento de MRO7 transformaciones digitales para servicios públicos que impulsarán el rendimiento de MRO
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • 6 cosas que hacer y no hacer en la planificación de piezas de repuesto6 cosas que hacer y no hacer en la planificación de piezas de repuesto
      La gestión de inventarios de piezas de repuesto puede parecer imposible. No sabes qué se romperá y cuándo. Los comentarios de los departamentos mecánicos y los equipos de mantenimiento suelen ser inexactos. Los programas de mantenimiento planificados a menudo se modifican, lo que los convierte en cualquier cosa menos "planificados". Los patrones de uso (es decir, la demanda) suelen ser extremadamente intermitentes, es decir, la demanda salta aleatoriamente entre cero y algo más, a menudo un número sorprendentemente grande. […]
    • Mano colocando piezas para construir una flechaPronóstico Probabilístico y Demanda Intermitente
      La nueva tecnología de pronóstico se deriva del pronóstico probabilístico, un método estadístico que pronostica con precisión tanto la demanda promedio de productos por período como los requisitos de inventario del nivel de servicio al cliente. […]