Top 4 bewegingen wanneer u vermoedt dat software de voorraad opdrijft

Er wordt ons vaak gevraagd: "Waarom drijft de software de voorraad op?" Het antwoord is dat Smart het in geen van beide richtingen stuurt - de inputs sturen het aan en die inputs worden beheerd door de gebruikers (of beheerders). Hier zijn vier dingen die u kunt doen om de resultaten te krijgen die u verwacht.

1. Bevestig dat uw serviceniveaudoelen in overeenstemming zijn met wat u wilt voor dat artikel of die groep artikelen. Het instellen van zeer hoge doelen (95% of meer) zal waarschijnlijk de inventaris verhogen als je op een lager niveau hebt rondgereden en het goed vindt om daar te zijn. Het is mogelijk dat u het nieuwe, hogere serviceniveau nog nooit heeft bereikt, maar klanten hebben niet geklaagd. Zoek uit welk serviceniveau heeft gewerkt door historische prestatierapporten te evalueren en stel uw doelen dienovereenkomstig vast. Houd er echter rekening mee dat concurrenten u kunnen verslaan op het gebied van artikelbeschikbaarheid als u de serviceniveaudoelstellingen van uw vader blijft gebruiken.

2. Zorg ervoor dat uw begrip van "serviceniveau" overeenkomt met de definitie van het softwaresysteem. Mogelijk meet u de prestaties op basis van hoe vaak u verzendt binnen een week na ontvangst van de bestelling van de klant, terwijl de software zich richt op bestelpunten op basis van uw vermogen om meteen te verzenden, niet binnen een week. Het is duidelijk dat de laatste meer inventaris nodig heeft om hetzelfde "serviceniveau" te bereiken. Een 75%-serviceniveau voor dezelfde dag kan bijvoorbeeld overeenkomen met een 90%-serviceniveau voor dezelfde week. In dit geval ben je echt appels met peren aan het vergelijken. Als dit de reden is voor de overtollige voorraad, bepaal dan welk serviceniveau "dezelfde dag" nodig is om u op het door u gewenste serviceniveau "dezelfde week" te krijgen en voer dat in de software in. Het gebruik van het minder strikte doel voor dezelfde dag zal de inventaris doen dalen, soms zeer aanzienlijk.

3. Evalueer de invoer van de doorlooptijd. We hebben gevallen gezien waarin doorlooptijden waren opgeblazen om oude software te misleiden om de gewenste resultaten te produceren. Moderne software houdt de prestaties van leveranciers bij door hun werkelijke doorlooptijden over meerdere bestellingen vast te leggen, en houdt vervolgens rekening met de doorlooptijdvariabiliteit in simulaties van dagelijkse activiteiten. Pas op als uw doorlooptijden zijn vastgesteld op een waarde die in het verre verleden is bepaald en niet actueel is.

4. Controleer uw vraagsignaal. U heeft veel historische transacties in uw ERP-systeem die op veel manieren kunnen worden gebruikt om de vraaghistorie te bepalen. Als u signalen gebruikt zoals overboekingen, of als u retouren niet uitsluit, overdrijft u mogelijk de vraag. Besteed wat tijd aan het definiëren van "vraag" op de manier die het meest logisch is voor uw situatie.

Ontdek gegevensfeiten en verbeter de voorraadprestaties

De beste voorraadplanningsprocessen zijn gebaseerd op statistische analyse om relevante feiten over de gegevens te ontdekken. Bijvoorbeeld:

  1. Het bereik van te verwachten vraagwaarden en doorlooptijden van leveranciers.
  2. De meest waarschijnlijke waarden van de vraag naar artikelen en de doorlooptijd van de leverancier.
  3. De volledige kansverdelingen van de artikelvraag en de doorlooptijd van de leverancier.

Als u het derde niveau bereikt, beschikt u over de feiten die nodig zijn om belangrijke operationele vragen te beantwoorden, aanvullende vragen zoals:

  1. Hoeveel extra voorraad is er precies nodig om het serviceniveau met 5% te verbeteren?
  2. Wat gebeurt er met tijdige levering als de voorraad wordt verminderd met 5%?
  3. Zal een van de bovenstaande wijzigingen een positief financieel rendement opleveren?
  4. Meer in het algemeen, welk serviceniveaudoel en bijbehorend voorraadniveau is het meest winstgevend?

Wanneer u over de feiten beschikt en uw zakelijke kennis toevoegt, kunt u beter geïnformeerde beslissingen nemen over opslag die een aanzienlijk rendement opleveren. Je schept ook de juiste verwachtingen bij interne en externe belanghebbenden, zodat er minder ongewenste verrassingen zijn.

Breid Epicor Prophet 21 uit met Smart IP&O's Forecasting & Dynamic Reorder Point Planning

In dit artikel zullen we de functionaliteit voor het bestellen van voorraad in Epicor P21 bekijken, de beperkingen ervan uitleggen en samenvatten hoe Smart Inventory Planning & Optimization (Smart IP&O) kan helpen de voorraad te verminderen, voorraadtekorten te minimaliseren en het vertrouwen van uw organisatie in uw ERP te herstellen door robuuste voorspellende analyses, op consensus gebaseerde prognoses en wat-als-scenarioplanning.

Functies voor aanvullingsplanning binnen Epicor Prophet 21
Epicor P21 kan de aanvulling beheren door te suggereren wat te bestellen en wanneer via op bestelpunten gebaseerd of op prognoses gebaseerd voorraadbeleid. Gebruikers kunnen dit beleid extern berekenen of dynamisch binnen P21 genereren. Zodra het beleid en de prognoses zijn gespecificeerd, zal P21's Purchase Order Requirements Generator (PORG) geautomatiseerde ordersuggesties maken over wat er moet worden aangevuld en wanneer door inkomende levering, actuele voorraad, uitgaande vraag, voorraadbeleid en vraagprognoses op elkaar af te stemmen.

Epicor P21 heeft 4 aanvullingsmethoden
In het artikelonderhoudsscherm van Epicor P21 kunnen gebruikers kiezen uit een van de vier aanvullingsmethoden voor elk voorraadartikel.

  1. min/max
  2. Bestelpunt/Bestelhoeveelheid
  3. EOQ
  4. Tot

Er zijn aanvullende instellingen en configuraties voor het bepalen van doorlooptijden en het afrekenen van ordermodifiers zoals door de leverancier opgelegde minimale en maximale bestelhoeveelheden. Min/Max en Bestelpunt/Bestelhoeveelheid worden beschouwd als "statisch" beleid. EOQ en Up To worden beschouwd als "dynamisch" beleid en worden berekend binnen P21.

min/max
Het bestelpunt is gelijk aan het Min. Telkens wanneer de voorhanden voorraad onder de Min (bestelpunt) zakt, zal het PORG-rapport een bestelsuggestie creëren tot aan de Max (als de voorraad na de overtreding bijvoorbeeld 20 eenheden is en de Max 100, dan is de bestelhoeveelheid 80) . Min/Max wordt beschouwd als een statisch beleid en eenmaal ingevoerd in P21 blijft het onveranderd tenzij het door de gebruiker wordt overschreven. Gebruikers gebruiken vaak spreadsheets om de min/max-waarden te berekenen en deze van tijd tot tijd bij te werken.

Bestelpunt/Bestelhoeveelheid
Dit is hetzelfde als het Min/Max-beleid, behalve dat in plaats van tot de Max te bestellen, een bestelling wordt voorgesteld voor een vaste hoeveelheid die door de gebruiker is gedefinieerd (bestel bijvoorbeeld altijd 100 eenheden wanneer het bestelpunt wordt overschreden). OP/OQ wordt beschouwd als een statisch beleid en blijft ongewijzigd, tenzij het door de gebruiker wordt overschreven. Gebruikers gebruiken vaak spreadsheets om OP/OQ-waarden te berekenen en deze van tijd tot tijd bij te werken.

EOQ
Het EOQ-beleid is een methode op basis van bestelpunten. Het bestelpunt wordt dynamisch gegenereerd op basis van P21's prognose van vraag over doorlooptijd + vraag over de beoordelingsperiode + veiligheidsvoorraad. De bestelhoeveelheid is gebaseerd op een berekening van de economische bestelhoeveelheid die rekening houdt met bewaarkosten en bestelkosten en probeert een bestelgrootte aan te bevelen die de totale kosten minimaliseert. Wanneer de voorhanden voorraad het bestelpunt overschrijdt, zal het PORG-rapport een bestelling uitzetten die gelijk is aan de berekende EOQ.

Tot
De Up To-methode is een ander dynamisch beleid dat afhankelijk is van een bestelpunt. Het wordt op dezelfde manier berekend als de EOQ-methode met behulp van de voorspelde vraag van P21 over de doorlooptijd + vraag over beoordelingsperiode + veiligheidsvoorraad. De suggestie voor de bestelhoeveelheid is gebaseerd op alles wat nodig is om de voorraad weer aan te vullen "tot" het bestelpunt. Dit komt meestal overeen met een bestelhoeveelheid die consistent is met de doorlooptijdvraag, omdat naarmate de vraag de voorraad onder het bestelpunt drijft, bestellingen worden voorgesteld "tot" het bestelpunt.

Epicor Prophet 21 met prognosevoorraadplanning P21

Het itemonderhoudsscherm van P21, waar gebruikers het gewenste voorraadbeleid kunnen specificeren en andere instellingen kunnen configureren, zoals veiligheidsvoorraad en bestelmodificaties.

Beperkingen

Voorspellingsmethoden
Er zijn twee prognosemodi in P21: Basis en Geavanceerd. Elk gebruikt een reeks middelingsmethoden en vereist handmatige configuraties en door de gebruiker bepaalde classificatieregels om een vraagprognose te genereren. Geen van beide modi is ontworpen met een out-of-the-box expertsysteem dat automatisch prognoses genereert die rekening houden met onderliggende patronen zoals trend of seizoensinvloeden. Er is veel configuratie vereist die de acceptatie door de gebruiker en wijziging van de veronderstelde prognoseregels die in de initiële implementatie zijn gedefinieerd en die mogelijk niet langer relevant zijn, belemmert. Er is geen manier om de prognosenauwkeurigheid van verschillende configuraties eenvoudig te vergelijken. Is het bijvoorbeeld beter om 24 maanden geschiedenis te gebruiken of 18 maanden? Is het nauwkeuriger om aan te nemen dat een trend moet worden toegepast wanneer een item met 2% per maand groeit of moet het 10% zijn? Is het beter om aan te nemen dat het artikel seizoensgebonden is als 80% of meer van zijn vraag plaatsvindt in 6 maanden van het jaar of 4 maanden van het jaar? Dientengevolge is het gebruikelijk dat classificatieregels te breed of specifiek zijn, wat leidt tot problemen zoals het toepassen van een onjuist prognosemodel, het gebruik van te veel of te weinig geschiedenis, of het over-/onderschatten van de trend en seizoensinvloeden. Bekijk deze blogpost (binnenkort beschikbaar) voor meer informatie over hoe dit werkt

Voorspellingsbeheer en consensusplanning
P21 mist prognosebeheerfuncties waarmee organisaties op meerdere hiërarchische niveaus kunnen plannen, zoals productfamilie, regio of per klant. Prognoses moeten worden gemaakt op het laagste niveau van granulariteit (product per locatie), waar de vraag vaak te wisselvallig is om een goede prognose te krijgen. Er is geen manier om prognoses te delen, samen te werken, te beoordelen of prognoses op geaggregeerd niveau te maken en overeenstemming te bereiken over het consensusplan. Het is moeilijk om zakelijke kennis op te nemen, prognoses op hogere aggregatieniveaus te beoordelen en bij te houden of overschrijvingen de nauwkeurigheid van prognoses verbeteren of schaden. Dit maakt prognoses te eendimensionaal en afhankelijk van de initiële wiskundige configuraties.  

Intermittent Demand
Veel P21-klanten vertrouwen op statische methoden (Min/Max en OP/OQ) vanwege de prevalentie van intermitterende vraag. Ook wel bekend als "klonterig", wordt de intermitterende vraag gekenmerkt door sporadische verkopen, grote pieken in de vraag en veel perioden zonder vraag. Wanneer de vraag intermitterend is, werken traditionele methoden voor prognoses en veiligheidsvoorraden gewoon niet. Omdat distributeurs niet de luxe hebben om alleen snel bewegende producten met een consistente vraag op voorraad te hebben, hebben ze gespecialiseerde oplossingen nodig die zijn ontworpen om periodiek gevraagde artikelen effectief te plannen. 80% of meer van de onderdelen van een distributeur zullen een intermitterende vraag hebben. Het voorraadbeleid dat wordt gegenereerd met behulp van traditionele methoden, zoals die beschikbaar zijn in P21 en andere planningsapplicaties, zal resulteren in onjuiste schattingen van wat er moet worden opgeslagen om het beoogde serviceniveau te bereiken. Zoals geïllustreerd in de onderstaande grafiek, is het niet mogelijk om de pieken consistent te voorspellen. U zit vast aan een prognose die in feite een gemiddelde is van de voorgaande perioden.

Epicor Prophet 21 met prognosevoorraadbeheer

Prognoses van intermitterende vraag kunnen de pieken niet voorspellen en vereisen veiligheidsvoorraadbuffers om te beschermen tegen stockouts.

 

Ten tweede kunt u met de veiligheidsvoorraadmethoden van P21 een doelserviceniveau instellen, maar de onderliggende logica gaat er ten onrechte van uit dat de vraag normaal verdeeld. Bij intermitterende vraag is de vraag niet “normaal” en daarom zal de schatting van de veiligheidsvoorraad verkeerd zijn. Dit is wat verkeerd betekent: bij het instellen van een serviceniveau van bijvoorbeeld 98%, is de verwachting dat 98% van de tijd dat de beschikbare voorraad 100% zal vullen met wat de klant nodig heeft uit het schap. Het gebruik van een normale verdeling om veiligheidsvoorraden te berekenen, zal resulteren in grote afwijkingen tussen het beoogde serviceniveau en het werkelijk bereikte serviceniveau. Het is niet ongebruikelijk om situaties te zien waarin het daadwerkelijke serviceniveau het doel met 10% of meer mist (dwz 95% beoogd maar slechts 85% behaalde).

 

Epicor Prophet 21 met prognose-inventarisanalyse

In deze afbeelding ziet u de vraaggeschiedenis van een onderdeel met tussenpozen en twee distributies op basis van deze vraaggeschiedenis. De eerste distributie is gegenereerd met dezelfde "normale distributie: logica die wordt gebruikt door P21. De tweede is een gesimuleerde verdeling op basis van de probabilistische voorspelling van Smart Software. De "normale" P21-distributie beveelt aan dat er 46 eenheden nodig zijn om het 99%-serviceniveau te bereiken, maar in vergelijking met de werkelijke waarden was er veel meer voorraad nodig. Smart voorspelde nauwkeurig dat er 63 units nodig waren om het serviceniveau te halen.

Deze blog legt uit hoe u de nauwkeurigheid van het serviceniveau van uw systeem kunt testen.

Vertrouwen op spreadsheets en reactieve planning
P21-klanten vertellen ons dat ze sterk afhankelijk zijn van het gebruik van spreadsheets om voorraadbeleid en prognoses te beheren. Spreadsheets zijn niet speciaal gebouwd voor prognoses en voorraadoptimalisatie. Gebruikers zullen vaak door de gebruiker gedefinieerd bakken vuistregel methoden die vaak meer kwaad dan goed doen. Eenmaal berekend, moeten gebruikers de informatie weer invoeren in P21 via handmatige bestandsimport of zelfs handmatige invoer. De tijdrovende aard van het proces leidt ertoe dat bedrijven zelden hun voorraadbeleid berekenen - Er gaan vele maanden en soms jaren voorbij tussen massale updates, wat leidt tot een reactieve benadering van "instellen en vergeten", waarbij de enige keer dat een koper/planner het voorraadbeleid beoordeelt, is op het moment van bestelling. Wanneer het beleid wordt herzien nadat het bestelpunt al is geschonden, is het te laat. Wanneer het orderpunt te hoog wordt geacht, is handmatige ondervraging vereist om de geschiedenis te bekijken, prognoses te berekenen, bufferposities te beoordelen en opnieuw te kalibreren. Het enorme aantal bestellingen betekent dat kopers bestellingen gewoon vrijgeven in plaats van de moeite te nemen om alles te bekijken, wat leidt tot een aanzienlijke overtollige voorraad. Als het bestelpunt te laag is, is het al te laat. Er is nu een versnelling nodig om de kosten op te drijven en zelfs dan loopt u nog steeds omzet mis als de klant ergens anders heen gaat.

Beperkte wat-als-planning
Aangezien functies voor het wijzigen van bestelpunten en bestelhoeveelheden in P21 zijn ingebouwd, is het niet mogelijk om grootschalige wijzigingen aan te brengen in groepen artikelen en de voorspelde resultaten te beoordelen voordat u beslist om vast te leggen. Dit dwingt gebruikers tot een afwachtend proces als het gaat om het wijzigen van parameters. Planners zullen een wijziging aanbrengen en vervolgens de werkelijke resultaten volgen totdat ze er zeker van zijn dat de wijziging dingen heeft verbeterd. Dit op grote schaal beheren – veel planners hebben te maken met tienduizenden items – is buitengewoon tijdrovend en het eindresultaat is een zeldzame herijking van het voorraadbeleid. Dit draagt ook bij aan reactief plannen waarbij planners instellingen pas bekijken nadat er een probleem is opgetreden.

Epicor is slimmer
Epicor werkt samen met Smart Software en biedt Smart IP&O aan als een platformonafhankelijke add-on voor Prophet 21, compleet met een bidirectionele API-gebaseerde integratie. Dit stelt Epicor-klanten in staat om gebruik te maken van speciaal voor dit doel gebouwde toepassingen voor prognoses en voorraadoptimalisatie. Met Epicor Smart IP&O kunt u prognoses genereren die trends en seizoensinvloeden vastleggen zonder dat u eerst handmatige configuraties hoeft toe te passen. U kunt elke planningscyclus automatisch opnieuw kalibreren met behulp van in de praktijk bewezen, geavanceerde statistische en probabilistische modellen die zijn ontworpen om nauwkeurig te plannen voor Intermittent demand. Veiligheidsvoorraden houden nauwkeurig rekening met variabiliteit in vraag en aanbod, zakelijke omstandigheden en prioriteiten. U kunt profiteren service level gestuurde planning zodat je net genoeg voorraad hebt of gebruik maken van optimalisatie methodes die het meest winstgevende voorraadbeleid en serviceniveaus voorschrijven die rekening houden met de werkelijke kosten van voorraadbeheer. U kunt consensusvraagprognoses maken die zakelijke kennis combineren met statistieken, klant- en verkoopprognoses beter beoordelen en met een paar muisklikken vol vertrouwen prognoses en voorraadbeleid uploaden naar Epicor.

Slimme IP&O-klanten realiseren routinematig een jaarlijks rendement van 7 cijfers door minder spoed, meer verkopen en minder overtollige voorraad, terwijl ze tegelijkertijd een concurrentievoordeel behalen door zich te onderscheiden op het gebied van verbeterde klantenservice. Om een opgenomen webinar te zien, gehost door de Epicor Users Group, waarin het platform voor demand planning en voorraadoptimalisatie van Smart wordt geprofileerd, kunt u zich hier registreren: https://smartcorp.com/epicor-smart-inventory-planning-optimization/

 

 

 

Breid de prognoses en min/max-planning van Epicor Kinetic uit met Smart IP&O

Breid de Forecasting & Min/Max Planning van Epicor Kinetic uit met Smart IP&O  
Epicor Kinetic kan de aanvulling beheren door te suggereren wat te bestellen en wanneer via op bestelpunten gebaseerd voorraadbeleid. Gebruikers kunnen deze bestelpunten handmatig specificeren of een dagelijks gemiddelde van de vraag gebruiken om het beleid dynamisch te berekenen. Als het beleid niet correct is, zullen de automatische bestelsuggesties onnauwkeurig zijn, en op zijn beurt zal de organisatie eindigen met overtollige voorraad, onnodige tekorten en een algemeen wantrouwen jegens hun softwaresystemen. In dit artikel zullen we de functionaliteit voor het bestellen van voorraad in Epicor Kinetic bekijken, de beperkingen ervan uitleggen en samenvatten hoe Smart Inventory Planning & Optimization (Smart IP&O) kan helpen om de voorraad te verminderen, stockouts te minimaliseren en het vertrouwen van uw organisatie in uw ERP te herstellen door de robuuste voorspellende functionaliteit die ontbreekt in ERP-systemen.

Epicor Kinetic (en Epicor ERP 10) aanvullingsbeleid
In het artikelonderhoudsscherm van Epicor Kinetic kunnen gebruikers planningsparameters invoeren voor elk voorraadartikel. Deze omvatten Min voorhanden, Max voorhanden, doorlooptijden voor veiligheidsvoorraad en ordermodificatoren zoals door de leverancier opgelegde minimale en maximale bestelhoeveelheden en veelvouden van bestellingen. Kinetic verzoent het binnenkomende aanbod, de actuele voorraad, de uitgaande vraag, het voorraadbeleid en de vraagprognoses (die moeten worden geïmporteerd) om het leveringsplan te vereffenen. Het tijdgefaseerde aanvullingsonderzoek van Epicor geeft aan wat er wanneer kan worden besteld, terwijl de Buyers Workbench gebruikers in staat stelt inkooporders samen te stellen.

Epicor's Min/Max/Safety-logica en prognoses die worden ingevoerd in het scherm "forecast entry" zorgen voor aanvulling. Hier is hoe het werkt:

  • Het bestelpunt is gelijk aan Min + Veiligheid. Dit betekent dat wanneer de beschikbare voorraad onder het bestelpunt zakt, er een bestelsuggestie wordt gemaakt. Als vraagprognoses worden geïmporteerd via het scherm "prognose invoer" van Epicor, zal het bestelpunt rekening houden met de voorspelde vraag over de doorlooptijd en is gelijk aan Min + Veiligheid + doorlooptijdprognose
  • Als "herbestellen naar Max" is geselecteerd, genereert Epicor een bestelhoeveelheid tot aan de Max. Indien niet geselecteerd, bestelt Epicor de "Min Order Qty" als MOQ kleiner is dan de voorspelde hoeveelheid over de time fence. Anders bestelt het de voorspelde vraag over de opgegeven periode. In de werkbank van de inkoper kan de inkoper desgewenst de werkelijke bestelhoeveelheid wijzigen.

 

Beperkingen
Epicor's Min/Max/Safety is gebaseerd op een gemiddelde dagelijkse vraag. Het is gemakkelijk in te stellen en te begrijpen. Het kan ook effectief zijn als u niet veel vraaggeschiedenis heeft. U moet echter prognoses maken en extern aanpassen voor seizoensinvloeden, trends en andere patronen. Ten slotte negeren veelvouden van gemiddelden ook de belangrijke rol van variatie in vraag of aanbod en dit kan resulteren in verkeerd toegewezen voorraad, zoals geïllustreerd in de onderstaande afbeelding: 

 

Epicor dezelfde gemiddelde vraag en veiligheidsvoorraad wordt bepaald

In dit voorbeeld hebben twee even belangrijke artikelen dezelfde gemiddelde vraag (2.000 per maand) en wordt de veiligheidsvoorraad bepaald door de doorlooptijdvraag te verdubbelen, wat resulteert in een bestelpunt van 4.000. Omdat de multiple de rol van variabiliteit in de vraag negeert, resulteert artikel A in een aanzienlijke overstock en artikel B resulteert in aanzienlijke stockouts.

Zoals ontworpen, zou Min de verwachte vraag gedurende de doorlooptijd moeten vasthouden en zou Safety een buffer moeten hebben. Deze velden worden echter vaak heel verschillend gebruikt tussen items zonder een uniform beleid; soms voeren gebruikers zelfs een minimum- en veiligheidsvoorraad in, ook al wordt het artikel voorspeld, waardoor de vraag in feite wordt overschat! Dit genereert bestelsuggesties voordat het nodig is, wat resulteert in overstocks.  

Spreadsheetplanning
Veel bedrijven wenden zich tot spreadsheets wanneer ze geconfronteerd worden met uitdagingen bij het bepalen van het beleid in hun ERP-systeem. Deze spreadsheets zijn vaak afhankelijk van door de gebruiker gedefinieerd vuistregel methoden die vaak meer kwaad dan goed doen. Eenmaal berekend, moeten ze de informatie weer invoeren in Epicor, via handmatige bestandsimport of zelfs handmatige invoer. De tijdrovende aard van het proces leidt ertoe dat bedrijven zelden hun voorraadbeleid berekenen - Er gaan vele maanden of zelfs jaren voorbij tussen massale updates die leiden tot een reactieve benadering van "instellen en vergeten", waarbij de enige keer dat een koper/planner het voorraadbeleid beoordeelt, is op het moment van bestelling. Wanneer het beleid wordt herzien nadat het bestelpunt al is geschonden, is het te laat. Wanneer het orderpunt te hoog wordt geacht, is handmatige ondervraging vereist om de geschiedenis te bekijken, prognoses te berekenen, bufferposities te beoordelen en opnieuw te kalibreren. Het enorme aantal bestellingen betekent dat kopers gewoon bestellingen vrijgeven in plaats van de moeite te nemen om alles te bekijken, wat leidt tot een aanzienlijke overtollige voorraad. Als het bestelpunt te laag is, is het al te laat. Er is nu een versnelling nodig om de kosten op te drijven en zelfs dan loopt u nog omzet mis als de klant ergens anders heen gaat.

Epicor is slimmer
Epicor werkt samen met Smart Software en biedt Smart IP&O aan als een platformonafhankelijke add-on voor Epicor Kinetic en Prophet 21 met API-gebaseerde integraties. Dit stelt Epicor-klanten in staat om gebruik te maken van de beste toepassingen voor prognoses en voorraadoptimalisatie. Met Epicor Smart IP&O kunt u elke planningscyclus automatisch opnieuw kalibreren met behulp van in de praktijk bewezen, geavanceerde statistische en probabilistische modellen. U kunt vraagprognoses berekenen die rekening houden met seizoens-, trend- en cyclische patronen. Veiligheidsvoorraden houden rekening met variabiliteit in vraag en aanbod, bedrijfsomstandigheden en prioriteiten. U kunt profiteren service level gestuurde planning zodat je net genoeg voorraad hebt of gebruik maken van optimalisatie methodes die het meest winstgevende voorraadbeleid en service levels voorschrijven die rekening houden met de werkelijke kosten van voorraadbeheer. U kunt consensus demand forecasts maken die zakelijke kennis combineren met statistieken, klant- en sales forecasts beter beoordelen en met een paar muisklikken vol vertrouwen forecasts en voorraadbeleid uploaden naar Epicor.

Slimme IP&O-klanten realiseren routinematig een jaarlijks rendement van 7 cijfers door minder spoed, meer verkopen en minder overtollige voorraad, terwijl ze tegelijkertijd een concurrentievoordeel behalen door zich te onderscheiden op het gebied van verbeterde klantenservice. Om een opgenomen webinar te zien, gehost door de Epicor Users Group, waarin het platform voor demand planning en voorraadoptimalisatie van Smart wordt geprofileerd, kunt u zich hier registreren: https://smartcorp.com/epicor-smart-inventory-planning-optimization/

 

 

 

 

Een beginnershandleiding voor uitvaltijd en wat u eraan kunt doen

Deze blog geeft een overzicht van dit onderwerp, geschreven voor niet-experts. Het

  • legt uit waarom je deze blog zou willen lezen.
  • somt de verschillende soorten "machine-onderhoud" op.
  • legt uit wat 'probabilistische modellering' is.
  • beschrijft modellen voor het voorspellen van uitvaltijd.
  • legt uit wat deze modellen voor u kunnen betekenen.

Belang van uitvaltijd

Als je dingen voor de verkoop maakt, heb je machines nodig om die dingen te maken. Als uw machines in bedrijf zijn, heeft u een goede kans om geld te verdienen. Als uw machines niet werken, verliest u kansen om geld te verdienen. Omdat downtime zo fundamenteel is, is het de moeite waard om geld te investeren en de downtime te minimaliseren. Met denken bedoel ik kansberekening, aangezien stilstandtijd van de machine is inherent een willekeurig fenomeen. Waarschijnlijkheidsmodellen kan het onderhoudsbeleid sturen.

Beleid voor machineonderhoud

Onderhoud is uw verdediging tegen uitvaltijd. Er zijn meerdere soorten onderhoudsbeleid, variërend van "Niets doen en wachten op falen" tot geavanceerde analytische benaderingen met sensoren en faalkansmodellen.

Een handige lijst met onderhoudsbeleid is:

  • Achterover leunen en wachten op problemen, en dan nog wat rondhangen en afvragen wat te doen als er onvermijdelijk problemen optreden. Dit is zo dwaas als het klinkt.
  • Hetzelfde als hierboven, behalve dat u zich voorbereidt op het falen om de uitvaltijd te minimaliseren, bijvoorbeeld door reserveonderdelen op te slaan.
  • Periodiek controleren op dreigende problemen in combinatie met interventies zoals het smeren van bewegende onderdelen of het vervangen van versleten onderdelen.
  • De timing van onderhoud baseren op gegevens over de machineconditie in plaats van te vertrouwen op een vast schema; vereist voortdurende gegevensverzameling en -analyse. Dit wordt conditiegestuurd onderhoud genoemd.
  • Gegevens over de machineconditie agressiever gebruiken door deze om te zetten in voorspellingen van uitvaltijd en suggesties voor te nemen stappen om uitval te vertragen. Dit wordt voorspellend onderhoud genoemd.

De laatste drie soorten onderhoud zijn afhankelijk van kansberekening om een onderhoudsschema op te stellen, of om te bepalen wanneer gegevens over de machineconditie moeten worden ingegrepen, of om te berekenen wanneer een storing kan optreden en hoe deze het beste kan worden uitgesteld.

 

Waarschijnlijkheidsmodellen van machinestoring

Hoe lang een machine zal draaien voordat deze uitvalt, is een willekeurige variabele. Zo is de tijd die het zal besteden naar beneden. Kansrekening is het deel van de wiskunde dat zich bezighoudt met willekeurige variabelen. Willekeurige variabelen worden beschreven door hun kansverdelingen, bijvoorbeeld, wat is de kans dat de machine 100 uur zal draaien voordat hij uitvalt? 200 uur? Of wat is de kans dat de machine na 100 uur of 200 uur nog steeds werkt?

Een subveld genaamd "betrouwbaarheidstheorie" beantwoordt dit soort vragen en behandelt verwante concepten zoals Mean Time Before Failure (MTBF), wat een verkorte samenvatting is van de informatie die is gecodeerd in de kansverdeling van tijd vóór mislukking.

Figuur 1 toont gegevens over de tijd vóór uitval van airconditioningunits. Dit type plot geeft de cumulatieve kansverdeling en toont de kans dat een eenheid na enige tijd is uitgevallen. Figuur 2 toont a betrouwbaarheidsfunctie:, het plotten van hetzelfde type informatie in een omgekeerd formaat, dat wil zeggen, het weergeven van de kans dat een eenheid na verloop van tijd nog steeds functioneert.

In figuur 1 geven de blauwe vinkjes naast de x-as de tijdstippen weer waarop individuele airconditioners faalden; dit zijn de basisgegevens. De zwarte curve toont het cumulatieve aandeel van eenheden die in de loop van de tijd zijn mislukt. De rode curve is een wiskundige benadering van de zwarte curve – in dit geval een exponentiële verdeling. De grafieken laten zien dat ongeveer 80 procent van de units zal uitvallen voordat ze 100 uur in bedrijf zijn.

Figuur 1 Cumulatieve distributiefunctie van uptime voor airconditioners

Figuur 1 Cumulatieve distributiefunctie van uptime voor airconditioners

 

Waarschijnlijkheidsmodellen kunnen worden toegepast op een afzonderlijk onderdeel of component of subsysteem, op een verzameling gerelateerde onderdelen (bijv. "het hydraulische systeem") of op een volledige machine. Elk van deze kan worden beschreven door de kansverdeling van de tijd voordat ze falen.

Figuur 2 toont de betrouwbaarheidsfunctie van zes subsystemen in een machine voor het graven van tunnels. De plot laat zien dat het meest betrouwbare subsysteem de snijarmen zijn en het minst betrouwbare het watersubsysteem. De betrouwbaarheid van het hele systeem kan worden benaderd door alle zes curven te vermenigvuldigen (omdat het systeem als geheel werkt, moet elk subsysteem functioneren), wat zou resulteren in een zeer korte interval voordat er iets misgaat.

Figuur 2 Voorbeelden van kansverdelingen van subsystemen in een tunnelmachine

Figuur 2 Voorbeelden van kansverdelingen van subsystemen in een tunnelmachine

 

Verschillende factoren zijn van invloed op de verdeling van de tijd voor falen. Investeren in betere onderdelen verlengt de levensduur van het systeem. Investeren in redundantie ook. Dat geldt ook voor het vervangen van gebruikte paren door nieuwe.

Zodra een kansverdeling beschikbaar is, kan deze worden gebruikt om een willekeurig aantal wat-als-vragen te beantwoorden, zoals hieronder wordt geïllustreerd in het gedeelte over de voordelen van modellen.

 

Benaderingen voor het modelleren van machinebetrouwbaarheid

Waarschijnlijkheidsmodellen kunnen ofwel de meest elementaire eenheden beschrijven, zoals individuele systeemcomponenten (Figuur 2), of verzamelingen van basiseenheden, zoals volledige machines (Figuur 1). In feite kan een hele machine worden gemodelleerd als een enkele eenheid of als een verzameling componenten. Als een hele machine als een enkele eenheid wordt behandeld, vertegenwoordigt de kansverdeling van de levensduur een samenvatting van het gecombineerde effect van de levensduurverdelingen van elk onderdeel.

Als we een model van een hele machine hebben, kunnen we naar modellen van verzamelingen machines springen. Als we in plaats daarvan beginnen met modellen van de levensduur van individuele componenten, dan moeten we die individuele modellen op de een of andere manier combineren tot een algemeen model van de hele machine.

Dit is waar de wiskunde harig kan worden. Modellering vereist altijd een verstandig evenwicht tussen vereenvoudiging, zodat sommige resultaten mogelijk zijn, en complicaties, zodat alle resultaten die naar voren komen realistisch zijn. De gebruikelijke truc is om aan te nemen dat storingen van de afzonderlijke onderdelen van het systeem onafhankelijk van elkaar optreden.

Als we ervan uit kunnen gaan dat storingen onafhankelijk optreden, is het meestal mogelijk om verzamelingen van machines te modelleren. Stel bijvoorbeeld dat een productielijn vier machines heeft die hetzelfde product produceren. Met een betrouwbaarheidsmodel voor één machine (zoals in figuur 1) kunnen we bijvoorbeeld voorspellen hoe groot de kans is dat over een week nog maar drie van de machines werken. Ook hier kan zich een complicatie voordoen: de kans dat een machine die vandaag werkt, morgen nog werkt, hangt vaak af van hoe lang het geleden is sinds de laatste storing. Als de tijd tussen storingen een exponentiële verdeling heeft zoals in figuur 1, dan blijkt dat het tijdstip van de volgende storing niet afhangt van hoe lang het geleden is sinds de laatste storing. Helaas hebben veel of zelfs de meeste systemen geen exponentiële distributies van uptime, dus de complicatie blijft.

Erger nog, als we beginnen met modellen van veel individuele componentbetrouwbaarheid, kan het bijna onmogelijk zijn om ons op te werken tot het voorspellen van uitvaltijden voor de hele complexe machine als we rechtstreeks met alle relevante vergelijkingen proberen te werken. In dergelijke gevallen is de enige praktische manier om resultaten te krijgen het gebruik van een andere stijl van modelleren: Monte Carlo-simulatie.

Monte Carlo-simulatie is een manier om berekening te vervangen door analyse wanneer het mogelijk is om willekeurige scenario's van systeemwerking te creëren. Het gebruik van simulatie om machinebetrouwbaarheid te extrapoleren uit de betrouwbaarheid van componenten werkt als volgt.

  1. Begin met de cumulatieve distributiefuncties (Figuur 1) of betrouwbaarheidsfuncties (Figuur 2) van elk machineonderdeel.
  2. Maak een willekeurig voorbeeld van de levensduur van elke component om een set voorbeeldfouten te krijgen die consistent zijn met de betrouwbaarheidsfunctie.
  3. Gebruik de logica van hoe componenten aan elkaar gerelateerd zijn, bereken de uitvaltijd van de hele machine.
  4. Herhaal stap 1-3 vele malen om het volledige scala aan mogelijke levensduur van de machine te zien.
  5. U kunt desgewenst het gemiddelde van de resultaten van stap 4 nemen om de levensduur van de machine samen te vatten met metrische gegevens zoals de MTBF of de kans dat de machine meer dan 500 uur zal draaien voordat deze defect raakt.

Stap 1 zou een beetje ingewikkeld zijn als we geen mooi kansmodel hebben voor de levensduur van een component, bijvoorbeeld zoiets als de rode lijn in figuur 1.

Stap 2 kan een zorgvuldige boekhouding vereisen. Naarmate de tijd verstrijkt in de simulatie, zullen sommige componenten defect raken en worden vervangen, terwijl andere door blijven gaan. Tenzij de levensduur van een component een exponentiële verdeling heeft, zal de resterende levensduur afhangen van hoe lang de component continu in gebruik is geweest. Dus deze stap moet rekening houden met de verschijnselen van branden in of verslijten.

Stap 3 verschilt van de andere doordat er wat achtergrondwiskunde voor nodig is, zij het van een eenvoudig type. Als Machine A alleen werkt als beide componenten 1 en 2 werken, dan (ervan uitgaande dat een storing van de ene component geen invloed heeft op de storing van de andere)

Kans [A werkt] = Kans [1 werkt] x Kans [2 werkt].

Als in plaats daarvan Machine A werkt als component 1 werkt of component 2 werkt of beide werken, dan

Waarschijnlijkheid [A faalt] = Waarschijnlijkheid [1 faalt] x Waarschijnlijkheid [2 faalt]

dus Waarschijnlijkheid [A werkt] = 1 – Waarschijnlijkheid [A faalt].

Stap 4 kan het creëren van duizenden scenario's omvatten om het volledige scala aan willekeurige uitkomsten te tonen. Berekenen is snel en goedkoop.

Stap 5 kan variëren, afhankelijk van de doelen van de gebruiker. Het berekenen van de MTBF is standaard. Kies andere die bij het probleem passen. Naast de samenvattende statistieken die in stap 5 worden geleverd, kunnen individuele simulatieruns worden uitgezet om intuïtie op te bouwen over de willekeurige dynamiek van machine-uptime en downtime. Afbeelding 3 toont een voorbeeld van een enkele machine met afwisselende cycli van uptime en downtime, resulterend in 85% uptime.

Afbeelding 3 Een voorbeeldscenario voor een enkele machine

Afbeelding 3 Een voorbeeldscenario voor een enkele machine

 

Voordelen van machinebetrouwbaarheidsmodellen

In afbeelding 3 is de machine 85% van de tijd in gebruik. Dat is misschien niet goed genoeg. U heeft misschien ideeën over hoe u de betrouwbaarheid van de machine kunt verbeteren. U kunt bijvoorbeeld de betrouwbaarheid van component 3 verbeteren door een nieuwere, betere versie van een andere leverancier te kopen. Hoeveel zou dat helpen? Dat is moeilijk te raden: component 3 is misschien maar een van de vele en misschien niet de zwakste schakel, en hoeveel de verandering loont, hangt af van hoeveel beter de nieuwe zou zijn. Misschien moet je een specificatie voor component 3 ontwikkelen die je vervolgens kunt kopen bij potentiële leveranciers, maar hoe lang moet component 3 meegaan om een materiële impact te hebben op de MTBF van de machine?

Dit is waar het hebben van een model loont. Zonder model vertrouw je op giswerk. Met een model kunt u speculaties over wat-als-situaties omzetten in nauwkeurige schattingen. U kunt bijvoorbeeld analyseren hoe een toename van 10% in MTBF voor component 3 zich zou vertalen in een verbetering van MTBF voor de hele machine.

Een ander voorbeeld: stel dat u zeven machines heeft die een belangrijk product produceren. U berekent dat u zes van de zeven moet inzetten om een grote order van uw ene grote klant te vervullen, zodat er één machine overblijft om de vraag van een aantal diverse kleine klanten af te handelen en als reserve te dienen. Een betrouwbaarheidsmodel voor elke machine zou kunnen worden gebruikt om de waarschijnlijkheid van verschillende onvoorziene omstandigheden in te schatten: alle zeven machines werken en de levensduur is goed; zes machines werken, zodat u in ieder geval uw belangrijkste klant tevreden kunt houden; slechts vijf machines werken, dus u moet iets onderhandelen met uw belangrijkste klant, enz.

Samengevat kunnen waarschijnlijkheidsmodellen van machine- of componentstoringen de basis vormen voor het omzetten van faaltijdgegevens in slimme zakelijke beslissingen.

 

Lees meer over  Maximaliseer machine-uptime met probabilistische modellering

 

Lees meer over   Probabilistische prognoses voor intermitterende vraag

 

 

Laat een reactie achter
gerelateerde berichten
Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

De kosten van spreadsheetplanning

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

Gebruikmaken van Epicor Kinetic Planning BOM's met Smart IP&O voor nauwkeurige prognoses

In deze blog onderzoeken we hoe het gebruik van Epicor Kinetic Planning BOM's met Smart IP&O uw benadering van forecasting in een zeer configureerbare productieomgeving kan transformeren. Ontdek hoe Smart, een geavanceerde AI-gestuurde oplossing voor vraagplanning en voorraadoptimalisatie, de complexiteit van het voorspellen van de vraag naar eindproducten kan vereenvoudigen, vooral als het om verwisselbare componenten gaat. Ontdek hoe het plannen van stuklijsten en geavanceerde prognosetechnieken bedrijven in staat stelt nauwkeuriger te anticiperen op de behoeften van klanten, waardoor de operationele efficiëntie wordt gewaarborgd en een voorsprong behouden in een concurrerende markt.