De volgende grens in Supply Chain Analytics

Wij geloven dat de ontwikkeling van digitale tweelingen van voorraadsystemen de leidende factor is op het gebied van supply chain-analyse. Deze tweelingen nemen de vorm aan van discrete gebeurtenismodellen die Monte Carlo-simulatie gebruiken om het volledige scala aan operationele risico's te genereren en te optimaliseren. We beweren ook dat wij en onze collega's bij Smart Software een grote rol hebben gespeeld bij het smeden van die voorsprong. Maar we zijn niet de enigen: er zijn een klein aantal andere softwarebedrijven over de hele wereld die bezig zijn met een inhaalslag.

Wat is de volgende stap op het gebied van supply chain-analyse? Waar ligt de volgende grens? Het kan gaan om een soort neuraal netwerkmodel van een distributiesysteem. Maar we zouden betere kansen hebben op een uitbreiding van onze toonaangevende modellen van voorraadsystemen met één echelon naar voorraadsystemen met meerdere echelons.

Figuren 1 en 2 illustreren het onderscheid tussen systemen met één en meerdere echelons. Figuur 1 toont een fabrikant die afhankelijk is van een bron om zijn voorraad reserveonderdelen of componenten aan te vullen. Wanneer er voorraadtekorten dreigen, bestelt de fabrikant aanvullingsvoorraden bij de Bron.

Eén multi-echelon voorraadoptimalisatiesoftware AI

Figuur 1: Een inventarisatiesysteem met één echelon

 

Single-echelon-modellen bevatten niet expliciet details van de Bron. Het blijft mysterieus, een onzichtbare geest wiens enige relevante kenmerk de willekeurige tijd is die nodig is om te reageren op een aanvullingsverzoek. Belangrijk is dat er impliciet van wordt uitgegaan dat de Bron zelf nooit een voorraad opslaat. Die veronderstelling kan voor veel doeleinden ‘goed genoeg’ zijn, maar kan niet letterlijk waar zijn. Dit wordt afgehandeld door stockout-gebeurtenissen van leveranciers in de distributie van de doorlooptijd van de aanvullingen te verwerken. Het terugdringen van die veronderstelling is de reden voor multi-echelon-modellering.

Figuur 2 toont een eenvoudig inventarisatiesysteem met twee niveaus. Het verschuift domeinen van productie naar distributie. Er zijn meerdere magazijnen (WH's) afhankelijk van een distributiecentrum (DC) voor bevoorrading. Nu is de DC een expliciet onderdeel van het model. Het heeft een beperkte capaciteit om bestellingen te verwerken en vereist zijn eigen herschikkingsprotocollen. De DC krijgt zijn aanvulling van hogerop in de keten van een bron. De Bron kan de fabrikant van het inventarisitem zijn of misschien een “regionale DC” of iets dergelijks, maar – raad eens? – het is een andere geest. Net als in het single-echelonmodel heeft deze geest één zichtbaar kenmerk: de waarschijnlijkheidsverdeling van de doorlooptijd van de aanvulling. (De clou van een beroemde grap uit de natuurkunde is: “Maar mevrouw, het zijn schildpadden helemaal naar beneden.” In ons geval: “Het zijn geesten helemaal naar boven.”)

Twee Multiechelon-software voor voorraadoptimalisatie AI

Figuur 2: Een inventarisatiesysteem met twee niveaus

 

Het probleem van procesontwerp en -optimalisatie is veel moeilijker op twee niveaus. De moeilijkheid is niet alleen de toevoeging van nog twee controleparameters voor elke WH (bijvoorbeeld een Min en een Max voor elk) plus dezelfde twee parameters voor de DC. Het lastigste deel is het modelleren van de interactie tussen de WH's. In het model met één niveau opereert elke WH in zijn eigen kleine wereld en hoort hij nooit "Sorry, we hebben geen voorraad meer" van de spookachtige Bron. Maar in een systeem met twee niveaus zijn er meerdere WH's die allemaal strijden om bevoorrading vanuit hun gedeelde DC. Deze concurrentie creëert de belangrijkste analytische moeilijkheid: de WH's kunnen niet afzonderlijk worden gemodelleerd, maar moeten tegelijkertijd worden geanalyseerd. Als één DC bijvoorbeeld tien WH's bedient, zijn er 2+10×2 = 22 voorraadbeheerparameters waarvan de waarden moeten worden berekend. In nerdtaal: het is niet triviaal om een beperkt, discreet optimalisatieprobleem met 22 variabelen en een stochastische objectieve functie op te lossen.

Als we het verkeerde systeemontwerp kiezen, ontdekken we een nieuw fenomeen dat inherent is aan systemen met meerdere niveaus, dat we informeel ‘meltdown’ of ‘catastrofe’ noemen. Bij dit fenomeen kan het DC de bevoorradingsbehoefte van de WH's niet bijhouden, waardoor er uiteindelijk voorraadtekorten op magazijnniveau ontstaan. Vervolgens putten de steeds hectischer wordende aanvullingsverzoeken van de WH de voorraad bij het DC uit, waardoor zijn eigen paniekerige verzoeken om aanvulling vanuit het regionale DC beginnen. Als het regionale DC er te lang over doet om het DC weer aan te vullen, dan ontaardt het hele systeem in een tragedie van uitputting.

Eén oplossing voor het meltdown-probleem is om het DC zo te ontwerpen dat het bijna nooit leeg raakt, maar dat kan erg duur zijn. Daarom is er in de eerste plaats een regionaal DC. Elk betaalbaar systeemontwerp heeft dus een DC die net goed genoeg is om lang mee te gaan tussen meltdowns. Dit perspectief impliceert een nieuw type Key Performance Indicator (KPI), zoals “De kans op een meltdown binnen X jaar is minder dan Y procent.”

De volgende grens zal nieuwe methoden en nieuwe maatstaven vereisen, maar zal een nieuwe manier bieden om distributiesystemen te ontwerpen en te optimaliseren. Onze skunkfabriek genereert al prototypes. Bekijk deze ruimte.

 

 

Onzekerheid overwinnen met technologie voor service- en voorraadoptimalisatie

In deze blog bespreken we de snelle en onvoorspelbare markt van vandaag en de voortdurende uitdagingen waarmee bedrijven worden geconfronteerd bij het efficiënt beheren van hun voorraad- en serviceniveaus. Het hoofdonderwerp van deze discussie, geworteld in het concept van ‘probabilistische voorraadoptimalisatie’, richt zich op de manier waarop moderne technologie kan worden ingezet om optimale service- en voorraaddoelstellingen te bereiken te midden van onzekerheid. Deze aanpak pakt niet alleen de traditionele problemen met voorraadbeheer aan, maar biedt ook een strategische voorsprong bij het omgaan met de complexiteit van vraagschommelingen en verstoringen van de toeleveringsketen.

Het begrijpen en implementeren van voorraadoptimalisatietechnologie is om verschillende redenen belangrijk. Ten eerste heeft het een directe invloed op het vermogen van een bedrijf om snel aan de eisen van de klant te voldoen, waardoor de klanttevredenheid en loyaliteit worden beïnvloed. Ten tweede houdt effectief voorraadbeheer de operationele kosten onder controle, waardoor onnodige voorraad wordt verminderd en het risico op stockouts of overstock wordt geminimaliseerd. In een tijdperk waarin de marktomstandigheden snel veranderen, kan het hebben van een robuust systeem om deze aspecten te beheren het verschil zijn tussen bloeien en alleen maar overleven.

De kern van voorraadbeheer ligt in een paradox: de noodzaak om voorbereid te zijn op de fluctuerende vraag, zonder te bezwijken voor de valkuilen van overbevoorrading, wat kan leiden tot hogere voorraadkosten, veroudering en verspilling van hulpbronnen. Omgekeerd kan een tekort aan voorraad resulteren in voorraadtekorten, omzetverlies en verminderde klanttevredenheid, wat uiteindelijk gevolgen heeft voor de reputatie en het bedrijfsresultaat van een bedrijf. De onvoorspelbare aard van de marktvraag, verergerd door mogelijke verstoringen van de toeleveringsketen en veranderend consumentengedrag, maakt deze evenwichtsoefening ingewikkelder.

Technologie speelt hier een cruciale rol. Moderne software voor voorraadoptimalisatie integreert probabilistische modellen, geavanceerde voorspellingsalgoritmen en simulatiemogelijkheden. Deze systemen helpen bedrijven snel te reageren op veranderende marktomstandigheden. Bovendien bevordert de adoptie van dergelijke technologie een cultuur van datagestuurde besluitvorming, waardoor bedrijven niet alleen maar reageren op onzekerheden, maar proactief strategieën ontwikkelen om de gevolgen ervan te verzachten.

Hier volgen korte discussies over de relevante algoritmische technologieën.

Probabilistische voorraadoptimalisatie: Traditionele benaderingen van voorraadbeheer zijn gebaseerd op deterministische modellen die uitgaan van een statische, voorspelbare wereld. Deze modellen wankelen als ze geconfronteerd worden met variabiliteit en onzekerheid. Maak kennis met probabilistische voorraadoptimalisatie, een paradigma dat de willekeur omarmt die inherent is aan supply chain-processen. Deze aanpak maakt gebruik van statistische modellen om de onzekerheden in vraag en aanbod weer te geven, waardoor bedrijven rekening kunnen houden met een volledig scala aan mogelijke uitkomsten.

Geavanceerde prognoses:  Een hoeksteen van effectieve voorraadoptimalisatie is het vermogen om nauwkeurig te anticiperen op de toekomstige vraag. Geavanceerde voorspellingstechnieken, zoals [we verkopen dit niet buiten SmartForecasts of misschien zelfs niet meer daar, dus vermeld het niet], tijdreeksanalyse en machinaal leren, extraheren exploiteerbare patronen uit historische gegevens.

Berekening van de veiligheidsvoorraad: een schild tegen onzekerheid:

Prognoses die schattingen van hun eigen onzekerheid bevatten, maken berekeningen van de veiligheidsvoorraad mogelijk. De veiligheidsvoorraad fungeert als buffer tegen de onvoorspelbaarheid van de doorlooptijden van vraag en aanbod. Het bepalen van het optimale niveau van de veiligheidsvoorraad is een cruciale uitdaging die probabilistische modellen goed kunnen aanpakken. Met de juiste veiligheidsvoorraden kunnen bedrijven een hoog serviceniveau handhaven, waardoor de productbeschikbaarheid wordt gegarandeerd zonder de last van overmatige voorraad.

Scenarioplanning: voorbereiden op meerdere toekomsten:

De toekomst is inherent onzeker en één enkele voorspelling kan nooit alle mogelijke scenario's omvatten. Geavanceerde methoden die een reeks realistische vraagscenario's creëren, zijn de essentiële vorm van probabilistische voorraadoptimalisatie. Met deze technieken kunnen bedrijven de implicaties van meerdere toekomsten onderzoeken, van best-case tot worst-case situaties. Door op deze scenario’s te anticiperen, kunnen bedrijven hun veerkracht vergroten in het licht van de marktvolatiliteit.

Met vertrouwen door de toekomst navigeren

Het onzekere landschap van de huidige zakelijke omgeving maakt een verschuiving noodzakelijk van traditionele voorraadbeheerpraktijken naar meer geavanceerde, probabilistische benaderingen. Door de principes van probabilistische voorraadoptimalisatie te omarmen, kunnen bedrijven een duurzaam evenwicht vinden tussen uitmuntende service en kostenefficiëntie. Door geavanceerde voorspellingstechnieken, strategische veiligheidsvoorraadberekeningen en scenarioplanning te integreren, ondersteund door Smart Inventory Planning and Optimization (Smart IP&O), kunnen bedrijven onzekerheid omzetten van een uitdaging in een kans. Bedrijven die deze aanpak omarmen, melden aanzienlijke verbeteringen in serviceniveaus, verlagingen van voorraadkosten en verbeterde flexibiliteit van de toeleveringsketen.

Minder kritieke artikelen die naar verwachting een serviceniveau van 99%+ zullen bereiken, vertegenwoordigen bijvoorbeeld mogelijkheden om de voorraad te verminderen. Door lagere serviceniveaus te richten op minder kritieke artikelen, zal de voorraad in de loop van de tijd “de juiste omvang” hebben voor het nieuwe evenwicht, waardoor de voorraadkosten en de waarde van de aanwezige voorraad afnemen. Een groot openbaarvervoersysteem verminderde de voorraad met ruim $4.000.000, terwijl het serviceniveau verbeterde.

Het optimaliseren van de voorraadniveaus betekent ook dat de besparingen die op één subset van artikelen worden gerealiseerd, opnieuw kunnen worden toegewezen aan een bredere portefeuille van artikelen die op voorraad zijn, waardoor inkomsten kunnen worden gerealiseerd die anders verloren zouden gaan. Een toonaangevende distributeur was in staat een breder portfolio aan onderdelen op voorraad te houden dankzij de besparingen dankzij voorraadreducties en een grotere beschikbaarheid van onderdelen door 18%.

 

 

 

6 essentiële stappen voor een betere herstelplanning

De slimme voorspeller

Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Nu we het middelpunt in 2013 naderen, is er nog steeds veel economische onzekerheid die uw planningsprocessen voor de toeleveringsketen bemoeilijkt. Sommigen kijken naar deze wankele economie en stellen noodzakelijke investeringen uit die hun organisaties kunnen positioneren voor een sterke toekomst.

Dit is echter niet het moment om je terug te trekken bevoorradingsketen verbeter initiatieven. Het is eerder een tijd om uw inspanningen te verdubbelen om u voor te bereiden op de onvermijdelijke zakelijke kansen die in het verschiet liggen.

Economisch herstel is een tijd van verkoopkansen. U wilt er zeker van zijn dat u bereid bent om hiervan te profiteren. Een goede vraag- en voorraadplanning kan hierbij helpen. Met de juiste software en planningsprocessen kunt u een solide statistische basis leggen voor toekomstige besluitvorming en tegelijkertijd weloverwogen aanpassingen maken als de omstandigheden dit vereisen. U kunt uw vermogen verbeteren om vraagsignalen te lezen, trends te herkennen, toekomstige gebeurtenissen te modelleren en uw voorraad in balans te brengen met de vraag.

Hier zijn zes gebieden van vraag- en voorraadplanning waar wijzigingen die u nu aanbrengt, kunnen leiden tot grote uitbetalingen wanneer zich nieuwe kansen voordoen:

1. Optimaliseer uw voorraden

Als de klant belt, wil je kunnen verzenden. Tegelijkertijd wilt u uw kosten beheersen. De zekerste manier om dat doel te bereiken, is door de 'sweet spot' van de inventaris te vinden. Dat is waar u de minimale voorraad heeft die nodig is om te voldoen aan de productvraag gedurende een bepaalde doorlooptijd en op een gewenst serviceniveau.

De mogelijkheid om veiligheidsvoorraden en voorraadniveaus nauwkeurig in te stellen, kan u onderscheiden van de concurrentie en een verschil maken in uw bedrijfsresultaten. Om dat punt te bereiken, moet u uw planningsfocus echter verleggen van alleen het voorspellen van de toekomstige vraag naar het optimaliseren van voorraadniveaus om toekomstige bestellingen te kunnen uitvoeren.

Als u meer wilt weten over het bereiken van de 'sweet spot', kunt u vinden een goed artikel gepubliceerd in APICS Magazine hier.

2. Implementeer oplossingen voor intermitterende vraagvoorspelling

Bedrijven in de service-onderdelen-, auto-aftermarket- en kapitaalgoederenindustrie hebben vaak te maken met een intermitterende, "langzaam bewegende" vraag naar een groot percentage van hun voorraaditems. Het nauwkeurig voorspellen van de vraag en het inschatten van veiligheidsvoorraden voor dit soort artikelen is waarschijnlijk de grootste uitdaging voor vraagplanners. Als u uw periodiek gevraagde onderdelen en producten nauwkeurig kunt voorspellen en de juiste hoeveelheid voorraad en veiligheidsvoorraad op voorraad heeft, hebt u de meeste concurrentie verslagen!

De reden hiervoor is dat artikelen met een intermitterende vraag geen normale vraagpatronen of verdelingen hebben, waardoor ze moeilijk te voorspellen zijn met traditionele prognosemethoden (zie onderstaand diagram).

Staafdiagram dat intermitterende vraag illustreert

Dus als u een nauwkeurige manier heeft om de intermitterende vraag te voorspellen en de vereisten voor veiligheidsvoorraden in te schatten, bent u uw concurrenten die dat niet hebben voor.

Als u meer wilt weten over het voorspellen en plannen van artikelen met intermitterende vraag, kunt u vinden een informatieve whitepaper hier.

3. Verbeter doorlooptijden

De economische neergang heeft bedrijven gedwongen hun inkoopstrategieën te heroverwegen vanwege de onzekere vraag thuis, lange doorlooptijden om hun goederen te verkrijgen, stijgende arbeidskosten in het buitenland en stijgende transportkosten. Het verkorten van de doorlooptijden voor aanvulling kan de tijd verkorten die nodig is om de producten te krijgen die u nodig hebt en helpt uw toeleveringsketen efficiënter te maken. Het maakt het ook gemakkelijker om te reageren op veranderingen in de vraag wanneer herstel komt.

4. Geef prioriteit aan serviceniveaus

Door serviceniveaus voor uw producten te prioriteren, kunt u ervoor zorgen dat de items die belangrijk zijn voor uw verkoop de aandacht krijgen die ze nodig hebben. Voor artikelen waar veel vraag naar is, kunt u overwegen om serviceniveaus hoger in te stellen dan voor items waar minder vraag naar is. Probeer ook een op inkomsten gebaseerde ABC-analyse uit te voeren van de Stock Keeping Units (SKU's) van uw bedrijf en stel de serviceniveaus dienovereenkomstig in in uw softwareplanningoplossing.

U kunt bijvoorbeeld de serviceniveaus voor uw 'brood en boter'-artikelen instellen op 95-99% of hoger, terwijl u de serviceniveaus veel lager instelt (op 70-80% of zelfs lager) voor andere artikelen. Op deze manier kan het zijn dat u veel minder voorraad nodig heeft voor sommige van uw SKU's en meer voorraad voor andere om uw algehele serviceniveaudoelen effectief te bereiken.

5. Gebruik een recentere vraaggeschiedenis bij het maken van uw prognoses

Omdat de economie zo snel aan het veranderen is, is het misschien tijd om de vraaggeschiedenis die wordt gebruikt bij het genereren van uw prognoses, in te korten, zodat er meer nadruk wordt gelegd op recente trends en vraagpatronen - die het "nieuwe normaal" weerspiegelen - in plaats van die in de verouderde geschiedenis van 3 of 4 jaar geleden. Dit moet natuurlijk worden gedaan in overleg met uw managementteam en bij voorkeur als onderdeel van een georganiseerd S&OP-proces dat zowel de risico's als de voordelen van het toepassen van deze strategie grondig evalueert.

6. Investeer in technologieën en middelen die u helpen kansen te benutten

Investeren in de juiste tools en processen vergroot uw concurrentievoordeel. Als u dit nog niet doet, zijn hier enkele waardevolle zaken om te overwegen:

• Start een S&OP-proces, of verfijn uw huidige proces, om de belangrijkste belanghebbenden in de toeleveringsketen erbij te betrekken en om ervoor te zorgen dat vraagprognoses en voorraadplanning belangrijke input vormen voor dat planningsproces.

• Als uw prognosesoftware niet goed is in het oppikken van trends, of het deel van uw voorraad met een periodieke vraag niet aankan, zoek dan software die deze taak aankan.

• Vind software die uw voorspellingsresultaten neemt en nauwkeurige voorraadniveaus genereert om te voldoen aan de vraag naar uw producten, componenten of grondstoffen gedurende gespecificeerde doorlooptijden en op serviceniveaus die u wenst.

• Zoek naar softwareoplossingen die schaalbaar zijn, maar toch een relatief lage totale eigendomskosten, een snelle terugverdientijd en een hoge ROI hebben.

• Bespaar tot slot niet op training; krijg alle training en advies die je nodig hebt om het maximale uit je software-investeringen te halen.

Heb je iets toe te voegen? Wat doet u om u voor te bereiden op het economisch herstel? Laat een reactie achter.

Charles Smart is de oprichter en president van Smart Software. Hij is momenteel vice-voorzitter in de raad van bestuur van Smart Software, als woordvoerder van het bedrijf en in de ontwikkeling van strategische zakelijke relaties. Voordat hij Smart Software oprichtte, was hij managementconsultant bij het Stanford Research Institute (SRI International) en Policy Analysis, Inc., en was hij luitenant bij de Amerikaanse marine.

Laat een reactie achter

gerelateerde berichten

Het beheren van de voorraad reserveonderdelen: beste praktijken

Het beheren van de voorraad reserveonderdelen: beste praktijken

In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs.

Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie

Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie

De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten.

Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie

Maak van AI-gestuurde voorraadoptimalisatie een bondgenoot voor uw organisatie

In deze blog onderzoeken we hoe organisaties uitzonderlijke efficiëntie en nauwkeurigheid kunnen bereiken met AI-gestuurde voorraadoptimalisatie. Traditionele methoden voor voorraadbeheer schieten vaak tekort vanwege hun reactieve karakter en hun afhankelijkheid van handmatige processen. Het handhaven van optimale voorraadniveaus is van fundamenteel belang om aan de vraag van de klant te voldoen en tegelijkertijd de kosten te minimaliseren. De introductie van AI-gestuurde voorraadoptimalisatie kan de last van handmatige processen aanzienlijk verminderen, waardoor supply chain-managers worden ontlast van vervelende taken.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]