Toekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain

Nutsbedrijven hebben unieke eisen voor de optimalisatie van de supply chain, waarbij in de eerste plaats een hoge uptime wordt gegarandeerd door alle kritieke machines continu draaiende te houden. Om dit te bereiken is het noodzakelijk dat er een hoge beschikbaarheid van reserveonderdelen wordt gehandhaafd om een consistente, betrouwbare en veilige levering te garanderen. Bovendien moeten nutsbedrijven als gereguleerde entiteiten ook de kosten zorgvuldig beheren en beheersen.

Efficiënt beheer van toeleveringsketens

Om een betrouwbare elektriciteitsvoorziening te behouden op 99.99%+ Zo moeten nutsbedrijven bijvoorbeeld snel kunnen reageren op veranderingen in de vraag op de korte termijn en nauwkeurig kunnen anticiperen op de toekomstige vraag. Om dit te kunnen doen moeten ze over een goed georganiseerde toeleveringsketen beschikken die hen in staat stelt de benodigde apparatuur, materialen en diensten op het juiste moment, in de juiste hoeveelheden en tegen de juiste prijs bij de juiste leveranciers aan te schaffen.

Dit is de afgelopen 3 jaar steeds uitdagender geworden.

  • Eisen voor veiligheid, betrouwbaarheid en dienstverlening zijn strenger.
  • Verstoringen in de toeleveringsketen, onvoorspelbare doorlooptijden van leveranciers, periodieke pieken in het gebruik van onderdelen zijn altijd problematisch geweest, maar nu zijn ze meer regel dan uitzondering.
  • Door deregulering in het begin van de jaren 2000 werden reserveonderdelen verwijderd van de lijst met direct terugbetaalde artikelen, waardoor nutsbedrijven werden gedwongen reserveonderdelen rechtstreeks uit de inkomsten te betalen[1]
  • De constante behoefte aan kapitaal in combinatie met agressief stijgende rentetarieven zorgen ervoor dat de kosten meer dan ooit onder de loep worden genomen.

Als gevolg hiervan is Supply Chain Optimization (SCO) een steeds belangrijker bedrijfspraktijk voor nutsbedrijven geworden. Om deze uitdagingen het hoofd te bieden, kunnen nutsbedrijven hun toeleveringsketen niet langer simpelweg beheren; ze moeten deze optimaliseren. En om dat te kunnen doen zijn investeringen in nieuwe processen en systemen nodig.

[1] Scala et al. "Risico- en reserveonderdeleninventarisatie in elektriciteitsbedrijven". Proceedings van de Industrial Engineering Research Conference.

Advanced Analytics and Optimization: Future-Proofing Utility Supply Chains

Voorraadplanning en -optimalisatie   

Gerichte investeringen in voorraadoptimalisatietechnologie bieden een pad voorwaarts voor elk nutsbedrijf. Voorraadoptimalisatie-oplossingen moeten prioriteit krijgen omdat ze:

  1. Kan worden geïmplementeerd in een fractie van de tijd die nodig is voor initiatieven op andere gebieden, zoals magazijnbeheer, ontwerp van toeleveringsketens en inkoopconsolidaties. Het is niet ongewoon om na 90 dagen voordelen te genereren en in minder dan 180 dagen een volledige software-implementatie te hebben.
  2. Kan een enorme ROI genereren, met een rendement van 20x en financiële voordelen van zeven cijfers per jaar. Door het gebruik van onderdelen beter te voorspellen, kunnen nutsbedrijven de kosten verlagen door alleen de benodigde voorraad in te kopen en tegelijkertijd het risico van voorraadtekorten, die leiden tot uitvaltijd en slechte serviceniveaus, te beheersen.
  3. Fundamentele ondersteuning bieden voor andere initiatieven. Een sterke toeleveringsketen berust op solide gebruiksprognoses en voorraadinkoopplannen.

Met behulp van voorspellende analyses en geavanceerde algoritmen helpt voorraadoptimalisatie nutsbedrijven om de serviceniveaus te maximaliseren en de operationele kosten te verlagen door de voorraadniveaus voor reserveonderdelen te optimaliseren. Een elektriciteitsbedrijf kan bijvoorbeeld statistische prognoses gebruiken om toekomstig gebruik van onderdelen te voorspellen, voorraadcontroles uit te voeren om overtollige voorraad te identificeren en analytische resultaten te gebruiken om te bepalen waar inspanningen voor voorraadoptimalisatie het eerst moeten worden gericht. Door dit te doen, kan het nutsbedrijf ervoor zorgen dat machines op een optimaal niveau werken en het risico op kostbare vertragingen als gevolg van een gebrek aan reserveonderdelen verminderen.

Door analyses en gegevens te gebruiken, kunt u bepalen welke reserveonderdelen en apparatuur u het meest nodig zult hebben en kunt u alleen de benodigde artikelen bestellen. Dit helpt ervoor te zorgen dat apparatuur een hoge up-time heeft. Het beloont regelmatige monitoring en aanpassing van voorraadniveaus, zodat wanneer de bedrijfsomstandigheden veranderen, u de verandering kunt detecteren en dienovereenkomstig kunt aanpassen. Dit houdt in dat planningscycli in een tempo moeten werken dat hoog genoeg is om de veranderende omstandigheden bij te houden. Hefboomwerking probabilistische voorspelling om het voorraadbeleid voor reserveonderdelen voor elke planningscyclus opnieuw te kalibreren, zorgt u ervoor dat het voorraadbeleid (zoals min/max-niveaus) altijd up-to-date is en het meest recente gebruik van onderdelen en doorlooptijden van leveranciers weerspiegelt.

 

Serviceniveaus en de afwegingscurve

Het serviceniveau Afwegingscurve relateert voorraadinvestering aan artikelbeschikbaarheid zoals gemeten door serviceniveau. Serviceniveau is de kans dat er geen tekorten ontstaan tussen het moment dat u meer voorraad bestelt en het moment dat deze in het schap ligt. Verrassend genoeg hebben maar weinig bedrijven gegevens over deze belangrijke maatstaf voor hun hele machinepark van reserveonderdelen.

De Service Level Tradeoff Curve legt het verband bloot tussen de kosten die gepaard gaan met verschillende serviceniveaus en de inventarisvereisten die nodig zijn om deze te bereiken. Weten welke componenten belangrijk zijn voor het handhaven van hoge serviceniveaus is de sleutel tot het optimalisatieproces en wordt bepaald door verschillende factoren, waaronder standaardisatie van inventarisitems, kritikaliteit, historisch gebruik en bekende toekomstige reparatieorders. Door deze relatie te begrijpen, kunnen nutsbedrijven middelen beter toewijzen, bijvoorbeeld wanneer de curven worden gebruikt om gebieden te identificeren waar kosten kunnen worden verlaagd zonder de betrouwbaarheid van het systeem te schaden.

Service Level tradeoff curve utilities costs inventory requirements Software

Met voorraadoptimalisatiesoftware is het instellen van voorraadbeleid puur giswerk: het is mogelijk om te weten hoe een bepaalde verhoging of verlaging de serviceniveaus zal beïnvloeden, afgezien van ruwe schattingen. Hoe de veranderingen zullen uitpakken in termen van voorraadinvesteringen, bedrijfskosten en tekortkosten, weet niemand echt. De meeste hulpprogramma's zijn afhankelijk van vuistregel methoden en het voorraadbeleid willekeurig op een reactieve manier aanpassen nadat er iets mis is gegaan, zoals een grote stockout of voorraadafschrijving. Wanneer aanpassingen op deze manier worden aangebracht, is er geen op feiten gebaseerde analyse waarin wordt beschreven hoe deze wijziging naar verwachting van invloed zal zijn op de statistieken die er toe doen: serviceniveaus en voorraadwaarden.

Voorraadoptimalisatiesoftware kan de gedetailleerde, kwantitatieve afwegingscurven berekenen die nodig zijn om weloverwogen voorraadbeleidskeuzes te maken of zelfs het beoogde serviceniveau aan te bevelen dat resulteert in de laagste totale bedrijfskosten (de som van voorraad-, bestel- en voorraadkosten). Met behulp van deze analyse kunnen grote stijgingen van voorraadniveaus wiskundig worden gerechtvaardigd wanneer de voorspelde vermindering van tekortkosten groter is dan de toename van voorraadinvesteringen en bijbehorende opslagkosten. Door de juiste serviceniveaus vast te stellen en het beleid voor alle actieve onderdelen een keer per planningscyclus (minstens één keer per maand) opnieuw te kalibreren, kunnen nutsbedrijven het risico op uitval minimaliseren en tegelijkertijd de uitgaven beheersen.

Misschien wel de meest kritieke aspecten van de reactie op uitval van apparatuur zijn die met betrekking tot het bereiken van een eerste keer repareren zo snel mogelijk. Het hebben van de juiste reserveonderdelen kan het verschil maken tussen het voltooien van een enkele reis en het verlengen van de gemiddelde reparatietijd, het dragen van de kosten die gepaard gaan met meerdere bezoeken en het verslechteren van de klantrelatie.

Met behulp van moderne software kunt u prestaties uit het verleden benchmarken en gebruikmaken van probabilistische prognosemethoden om toekomstige prestaties te simuleren. Door uw huidige voorraadbeleid te stresstesten tegen alle plausibele scenario's van toekomstig onderdelengebruik, weet u van tevoren hoe het huidige en voorgestelde voorraadbeleid waarschijnlijk zal presteren. Cbekijk onze blogpost op hoe u de nauwkeurigheid van uw serviceniveauprognose kunt meten om u te helpen bij het beoordelen van de juistheid van inventarisaanbevelingen die softwareleveranciers beweren te bieden.

 

Optimizing Utility Supply Chains Advanced Analytics for Future Readiness

 

Maak gebruik van geavanceerde analyses en AI

Bij het introduceren van automatisering heeft elk nutsbedrijf zijn eigen doelen die moeten worden nagestreefd, maar u moet beginnen met het beoordelen van de huidige activiteiten om gebieden te identificeren die effectiever kunnen worden gemaakt. Sommige bedrijven geven misschien prioriteit aan financiële kwesties, maar andere geven misschien prioriteit aan wettelijke eisen, zoals uitgaven voor schone energie of sectorbrede veranderingen zoals slimme netwerken. De problemen van elk bedrijf zijn uniek, maar moderne software kan de weg wijzen naar een effectiever voorraadbeheersysteem dat overtollige voorraad minimaliseert en de juiste componenten op de juiste momenten op de juiste plaats plaatst.

Over het algemeen zijn initiatieven voor supply chain-optimalisatie essentieel voor nutsbedrijven die hun efficiëntie willen maximaliseren en hun kosten willen verlagen. Technologie stelt ons in staat om het integratieproces naadloos te laten verlopen, en u hoeft uw huidige ERP- of EAM-systeem niet te vervangen door dit te doen. Je moet gewoon beter gebruik maken van de data die je al hebt.

Een groot nutsbedrijf lanceerde bijvoorbeeld een strategisch Supply Chain Optimization (SCO)-initiatief en voegde best-in-class mogelijkheden toe door de selectie en integratie van commerciële kant-en-klare toepassingen. De belangrijkste hiervan was het Smart Inventory Planning and Optimization-systeem (Smart IP&O), bestaande uit de functionaliteit voor het voorspellen van onderdelen / vraagplanning en voorraadoptimalisatie. Binnen slechts 90 dagen was het softwaresysteem operationeel, waardoor de voorraad al snel met $9.000.000 afnam, terwijl de beschikbaarheid van reserveonderdelen op een hoog niveau bleef. U kunt de casus hier lezen Elektriciteit gaat mee met Smart IP&O.

Nutsbedrijven kunnen ervoor zorgen dat ze hun voorraden reserveonderdelen op een efficiënte en kosteneffectieve manier kunnen beheren, zodat ze beter voorbereid zijn op de toekomst. Na verloop van tijd vertaalt dit evenwicht tussen vraag en aanbod zich in een aanzienlijke voorsprong. Het begrijpen van de Service Level Tradeoff Curve helpt bij het begrijpen van de kosten die gepaard gaan met verschillende serviceniveaus en de inventarisvereisten die nodig zijn om deze te bereiken. Dit leidt tot lagere operationele kosten, geoptimaliseerde voorraad en de zekerheid dat u aan de behoeften van uw klanten kunt voldoen.

 

 

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

    Net zoals de beroemde astronoom Copernicus ons begrip van de astronomie transformeerde door de zon in het centrum van ons universum te plaatsen, nodigen wij u vandaag uit om uw benadering van voorraadbeheer opnieuw centraal te stellen. En ook al is dit advies niet zo verhelderend, het zal uw bedrijf helpen voorkomen dat u verstrikt raakt in de aantrekkingskracht van voorraadproblemen – voortdurend heen en weer geslingerd tussen voorraadtekorten, overtollige zwaartekracht en de onverwachte kosmische kosten van het bespoedigen van goederen.

    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

    In servicegerichte bedrijven zijn de gevolgen van voorraadtekorten vaak zeer groot. Het bereiken van een hoog serviceniveau is afhankelijk van de beschikbaarheid van de juiste onderdelen op het juiste moment. Het hebben van de juiste onderdelen is echter niet de enige factor. Uw Supply Chain-team moet voor elk onderdeel een consensusinventarisatieplan ontwikkelen en dit vervolgens voortdurend bijwerken om realtime veranderingen in vraag, aanbod en financiële prioriteiten weer te geven.

     

    Voorraadbeheer met serviceniveaugestuurde planning combineert de mogelijkheid om duizenden items te plannen met strategische modellering op hoog niveau. Dit vereist het aanpakken van de kernproblemen waarmee voorraadmanagers worden geconfronteerd:

    • Gebrek aan controle over het aanbod en de bijbehorende doorlooptijden.
    • Onvoorspelbare intermitterende vraag.
    • Conflicterende prioriteiten tussen onderhouds-/mechanische teams en materiaalbeheer.
    • Reactieve ‘afwachtende’ benadering van planning.
    • Verkeerd toegewezen voorraad, waardoor voorraadtekorten en overschotten ontstaan.
    • Gebrek aan vertrouwen in systemen en processen.

    De sleutel tot optimaal beheer van serviceonderdelen is het vinden van de balans tussen het bieden van uitstekende service en het beheersen van de kosten. Om dit te doen, moeten we de kosten van stockout vergelijken met de kosten van het aanhouden van extra voorraad reserveonderdelen. De kosten van een stockout zullen hoger zijn voor kritieke of noodreserveonderdelen, wanneer er een serviceniveauovereenkomst is met externe klanten, voor onderdelen die in meerdere activa worden gebruikt, voor onderdelen met langere doorlooptijden van leveranciers, en voor onderdelen met één enkele leverancier. De voorraadkosten kunnen worden beoordeeld door rekening te houden met de eenheidskosten, de rentetarieven, de magazijnruimte die zal worden verbruikt en de kans op veroudering (onderdelen die worden gebruikt in een wagenpark dat binnenkort met pensioen gaat, hebben bijvoorbeeld een hoger risico op veroudering).

    Om te bepalen hoeveel voorraad er voor elk onderdeel op de plank moet worden gelegd, is het van cruciaal belang om consensus te bereiken over de gewenste sleutelgegevens die de afwegingen blootleggen die het bedrijf moet maken om de gewenste KPI's te bereiken. Deze KPI's omvatten serviceniveaus die u vertellen hoe vaak u aan de gebruiksbehoeften voldoet zonder dat u tekortschiet in de voorraad, vulpercentages die u vertellen welk percentage van de vraag is gevuld, en bestelkosten geven een gedetailleerd overzicht van de kosten die u maakt wanneer u aanvullingsorders plaatst en ontvangt. Je hebt ook holdingkosten, die uitgaven omvatten zoals veroudering, belastingen en opslag, en tekortkosten die betrekking hebben op uitgaven die worden gemaakt wanneer er voorraadtekorten optreden.

    Een MRO-bedrijf of een team voor aftermarket-onderdelenplanning wenst mogelijk een 99%-serviceniveau voor alle onderdelen – dat wil zeggen dat het minimale voorraadrisico dat zij bereid zijn te accepteren 1% is. Maar wat als de hoeveelheid voorraad die nodig is om dat serviceniveau te ondersteunen, te duur is? Om een weloverwogen beslissing te kunnen nemen over de vraag of die extra voorraadinvestering rendement oplevert, moet u de voorraadkosten kennen en die vergelijken met de voorraadkosten. Om de stockoutkosten te berekenen, vermenigvuldigt u twee belangrijke elementen: de kosten per stockout en het verwachte aantal stockouts. Om de voorraadwaarde te bepalen, vermenigvuldigt u de vereiste eenheden met de eenheidskosten van elk onderdeel. Bepaal vervolgens de jaarlijkse holdingkosten (doorgaans 25-35% van de eenheidskosten). Kies de optie die in totaal lagere kosten oplevert. Met andere woorden: als het voordeel dat gepaard gaat met het toevoegen van meer voorraad (lagere tekortkosten) groter is dan de kosten (hogere voorraadkosten), ga er dan voor. Een grondig begrip van deze statistieken en de bijbehorende afwegingen dient als kompas voor de besluitvorming.

    Moderne software helpt bij dit proces doordat u een groot aantal toekomstscenario's kunt simuleren. Door dit te doen, kunt u beoordelen hoe goed uw huidige voorraadbevoorradingsstrategieën waarschijnlijk zullen presteren in het licht van verschillende vraag- en aanbodpatronen. Als er iets tekortschiet of misgaat, is het tijd om uw aanpak opnieuw te kalibreren, waarbij u rekening houdt met actuele gegevens over de gebruiksgeschiedenis, doorlooptijden van leveranciers en kosten om zowel voorraad- als overvoorraadsituaties te voorkomen.

     

    Verbeter uw op serviceniveau gebaseerde voorraadplan op consistente wijze.

    Concluderend is het van cruciaal belang om uw serviceniveaugestuurde plan voortdurend te beoordelen. Door systematisch prestatiescenario's op te stellen en te verfijnen, kunt u belangrijke meetgegevens en doelen definiëren, de verwachte prestaties benchmarken en de berekening van het voorraadbeleid voor alle artikelen automatiseren. Dit iteratieve proces omvat het monitoren, herzien en herhalen van elke planningscyclus.

    De diepgang van uw analyse binnen dit voorraadbeleid is afhankelijk van de gegevens waarover u beschikt en de configuratiemogelijkheden van uw planningssysteem. Om optimale resultaten te bereiken, is het noodzakelijk om voortdurende gegevensanalyses uit te voeren. Dit impliceert dat een handmatige benadering van dataonderzoek doorgaans onvoldoende is voor de behoeften van de meeste organisaties.

    Bezoek de volgende blogs voor informatie over hoe Smart Software u kan helpen de doelstellingen van uw servicetoeleveringsketen te bereiken met servicegestuurde planning en meer.

    –   “Uitleggen wat serviceniveau betekent in uw voorraadoptimalisatiesoftware”  Aanbevelingen voor kous kunnen verwarrend zijn, vooral als ze botsen met de behoeften in de echte wereld. In dit bericht leggen we uit wat dat 99%-serviceniveau betekent en waarom het cruciaal is om de voorraad effectief te beheren en klanten tevreden te houden in het huidige competitieve landschap.

    – “Servicegestuurde planning voor bedrijven met serviceonderdelenService-level-driven serviceonderdelenplanning is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, risico-aangepaste beslissingsondersteuning.

    –   “Hoe u een doelserviceniveau kiest.Dit is een strategische beslissing over voorraadrisicobeheer, waarbij rekening wordt gehouden met de huidige serviceniveaus en opvullingspercentages, de doorlooptijden van de bevoorrading en de afwegingen tussen kapitaal-, voorraad- en opportuniteitskosten. Leer benaderingen die kunnen helpen.

    –   “De juiste voorspellingsnauwkeurigheid voor voorraadplanning.”  Het feit dat u een serviceniveaudoel stelt, betekent niet dat u dit ook daadwerkelijk zult bereiken. Als u geïnteresseerd bent in het optimaliseren van de voorraadniveaus, concentreer u dan op de nauwkeurigheid van de projectie van het serviceniveau. Leren hoe.

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren

      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

      Het belang van een geoptimaliseerde planning van serviceonderdelen:

      Geoptimaliseerd beheer van serviceonderdelen speelt een cruciale rol bij het beperken van voorraadrisico's en het waarborgen van de beschikbaarheid van kritieke reserveonderdelen. Hoewel subjectieve planning op kleine schaal kan werken, wordt het onvoldoende bij het beheer van grote voorraden van af en toe gevraagde reserveonderdelen. Traditionele prognosebenaderingen houden simpelweg geen rekening met de extreme variabiliteit in de vraag en frequente periodes van nulvraag die zo gewoon zijn bij reserveonderdelen. Dit resulteert in grote misallocaties van voorraden, hogere kosten en slechte serviceniveaus.

      De sleutel tot geoptimaliseerd beheer van serviceonderdelen ligt in het begrijpen van de wisselwerking tussen service en kosten. Software voor voorraadoptimalisatie en vraagplanning, mogelijk gemaakt door probabilistische prognoses en machine learning-algoritmen, kan bedrijven helpen de kosten versus baten van elke voorraadbeslissing beter te begrijpen en voorraad als een concurrentievoordeel te gebruiken. Door binnen enkele seconden nauwkeurige vraagprognoses en een optimaal voorraadbeleid zoals Min/Max, veiligheidsvoorraadniveaus en bestelpunten te genereren, kunnen bedrijven weten hoeveel te veel is en wanneer ze meer moeten toevoegen. Door voorraad als een concurrentievoordeel te hanteren, kunnen bedrijven hun serviceniveau verhogen en de kosten verlagen.

      Verbeter het financiële resultaat van de planning van reserveonderdelen

      1. Nauwkeurige prognoses zijn cruciaal om de voorraadplanning te optimaliseren en effectief aan de vraag van de klant te voldoen. State-of-the-art software voor vraagplanning voorspelt nauwkeurig de voorraadvereisten, zelfs voor intermitterende vraagpatronen. Door prognoses te automatiseren, kunnen bedrijven tijd, geld en middelen besparen en tegelijkertijd de nauwkeurigheid verbeteren.
      2. Voldoen aan de vraag van de klant is een cruciaal aspect van het beheer van serviceonderdelen. Bedrijven kunnen de klanttevredenheid en -loyaliteit vergroten en hun kansen vergroten om toekomstige contracten binnen te halen voor de activa-intensieve apparatuur die ze verkopen door ervoor te zorgen dat reserveonderdelen beschikbaar zijn wanneer dat nodig is. Door effectieve vraagplanning en voorraadoptimalisatie kunnen organisaties doorlooptijden verkorten, voorraadtekorten minimaliseren en serviceniveaus handhaven, waardoor de financiële impact van alle beslissingen wordt verbeterd.
      3. Financiële voordelen kunnen worden behaald door een geoptimaliseerde planning van serviceonderdelen, inclusief de vermindering van voorraad- en productkosten. Overtollige opslag en verouderde inventaris kunnen een aanzienlijke kostenpost zijn voor organisaties. Door best-of-breed voorraadoptimalisatiesoftware te implementeren, kunnen bedrijven kosteneffectieve oplossingen vinden, het serviceniveau verhogen en de kosten verlagen. Dit leidt tot verbeterde voorraadomzet, lagere transportkosten en hogere winstgevendheid.
      4. Inkoopplanning is een ander essentieel aspect van het beheer van serviceonderdelen. Organisaties kunnen voorraadniveaus optimaliseren, doorlooptijden verkorten en voorraadtekorten voorkomen door inkoop en de bijbehorende orderhoeveelheden af te stemmen op nauwkeurige vraagprognoses. Er kunnen bijvoorbeeld nauwkeurige prognoses worden gedeeld met leveranciers, zodat algemene inkoopverplichtingen kunnen worden aangegaan. Dit geeft de leverancier omzetzekerheid en kan in ruil daarvoor meer voorraad aanhouden, waardoor de doorlooptijden worden verkort.
      5. Intermitterende vraagplanning is een bijzondere uitdaging bij het beheer van reserveonderdelen. Conventionele vuistregels schieten tekort in het effectief omgaan met vraagvariabiliteit. Dit komt omdat traditionele benaderingen ervan uitgaan dat de vraag normaal verdeeld is, terwijl dat in werkelijkheid allesbehalve normaal is. Reserveonderdelen vragen om willekeurige uitbarstingen van grote vraag die worden afgewisseld met perioden van nul vraag. De oplossing van Smart Software bevat geavanceerde statistische modellen en machine learning-algoritmen om historische vraagpatronen te analyseren, waardoor een nauwkeurige planning voor intermitterende vraag mogelijk wordt. Bedrijven kunnen de voorraadkosten aanzienlijk verlagen en de efficiëntie verbeteren door deze uitdaging aan te gaan.

      Bewijs van klanten van Smart Software:

      Door te investeren in de software voor voorraadoptimalisatie en vraagplanning van Smart Software kunnen bedrijven kostenbesparingen realiseren, de klantenservice naar een hoger niveau tillen en de operationele efficiëntie verbeteren. Door nauwkeurige vraagprognoses, geoptimaliseerd voorraadbeheer en gestroomlijnde inkoopprocessen kunnen organisaties financiële besparingen realiseren, effectief voldoen aan de eisen van klanten en de algehele bedrijfsprestaties verbeteren.

      • Metro-North Railroad (MNR) ervoer een 8%-vermindering van de onderdelenvoorraad, bereikte een recordhoog klantenserviceniveau van 98,7% en verminderde de voorraadgroei voor nieuwe apparatuur van een verwachte 10% tot slechts 6%. Slimme software speelde een cruciale rol bij het identificeren van meerjarige behoeften aan serviceonderdelen, het verkorten van administratieve doorlooptijden, het opstellen van plannen voor voorraadvermindering voor wagenparken die buiten gebruik worden gesteld en het identificeren van inactieve inventaris voor verwijdering. MNR bespaarde kosten, maximaliseerde verwijderingsvoordelen, verbeterde serviceniveaus en verwierf nauwkeurige inzichten voor weloverwogen besluitvorming, wat uiteindelijk hun bedrijfsresultaten en klanttevredenheid verbeterde.
      • Seneca Companies, marktleider op het gebied van petroleumservices voor de auto-industrie, heeft Smart Software gebruikt om de vraag van klanten te modelleren, de voorraadprestaties te controleren en aanvulling te stimuleren. Buitendiensttechnici omarmden het gebruik ervan en de totale inventarisinvestering daalde met meer dan 25%, van $11 miljoen naar $8 miljoen, terwijl de first-time fix rates van 90%+ behouden bleven.
      • Een toonaangevend elektriciteitsbedrijf implementeerde Smart IP&O in slechts 3 maanden en gebruikte de software vervolgens om de bestelpunten en bestelhoeveelheden voor meer dan 250.000 reserveonderdelen te optimaliseren. Tijdens de eerste fase van de implementatie hielp het platform het nutsbedrijf om de voorraad met $9.000.000 te verminderen met behoud van serviceniveaus. De implementatie was onderdeel van het strategische optimalisatie-initiatief van het bedrijf.

      Optimalisatie van de planning van serviceonderdelen voor concurrentievoordeel

      Geoptimaliseerd beheer van serviceonderdelen is cruciaal voor bedrijven die de efficiëntie willen verbeteren, kosten willen verlagen en de beschikbaarheid van noodzakelijke reserveonderdelen willen waarborgen. Organisaties kunnen op dit gebied aanzienlijke waarde ontsluiten door te investeren in de software voor voorraadoptimalisatie en vraagplanning van Smart Software. Bedrijven kunnen betere financiële prestaties behalen en een concurrentievoordeel behalen in hun respectievelijke markten door verbeterde data-analyse, automatisering en voorraadplanning.

      Smart Software is ontworpen voor de moderne markt, die volatiel is en altijd verandert. Het kan SKU-proliferatie, langere toeleveringsketens, minder voorspelbare doorlooptijden en meer intermitterende en minder voorspelbare vraagpatronen aan. Het kan ook worden geïntegreerd met vrijwel elke ERP-oplossing op de markt, door in de praktijk bewezen naadloze verbindingen of door een eenvoudig import-/exportproces te gebruiken dat wordt ondersteund door het datamodel en de dataverwerkingsengine van Smart Software. Door slimme software te gebruiken, kunnen bedrijven voorraad als een concurrentievoordeel gebruiken, de klanttevredenheid verbeteren, het serviceniveau verhogen, de kosten verlagen en aanzienlijk geld besparen.

       

      Software voor planning van reserveonderdelen

      De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

      Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

       

       

      Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

       

      Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

       

        Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad

        Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien.

        Denk eens aan een openbaar vervoersbedrijf. In de meeste grote steden zullen de jaarlijkse operationele budgetten de $3 miljard overschrijden. De kapitaaluitgaven voor treinen, metro's en infrastructuur kunnen jaarlijks honderden miljoenen bedragen. Bijgevolg zal een voorraad reserveonderdelen ter waarde van $150 miljoen wellicht niet de aandacht trekken van de CFO of algemeen directeur, aangezien deze een klein percentage van de balans vertegenwoordigt. Bovendien moeten in op MRO gebaseerde industrieën veel onderdelen de machineparken tien jaar of langer ondersteunen, waardoor extra voorraden een noodzakelijke troef zijn. In sommige sectoren, zoals nutsbedrijven, kan het aanhouden van extra voorraden zelfs gestimuleerd worden om ervoor te zorgen dat de apparatuur in goede staat blijft.

        We hebben zorgen over overtollige voorraden zien ontstaan wanneer de magazijnruimte beperkt is. Ik herinner me dat ik aan het begin van mijn carrière getuige was van het spoorwegemplacement van een openbaar vervoersbedrijf, gevuld met verroeste assen met een waarde van meer dan $100.000 per stuk. Mij werd verteld dat de assen moesten worden blootgesteld aan de elementen vanwege onvoldoende magazijnruimte. De opportuniteitskosten die verband houden met de ruimte die wordt ingenomen door extra voorraad worden een overweging wanneer de magazijncapaciteit is uitgeput. De belangrijkste overweging die alle andere beslissingen overtroeft, is hoe de voorraad een hoog serviceniveau voor interne en externe klanten garandeert. Voorraadplanners maken zich veel meer zorgen over terugslag als gevolg van voorraadtekorten dan over overaankopen. Wanneer een ontbrekend onderdeel leidt tot een SLA-schending of het stilleggen van de productielijn, wat resulteert in miljoenen aan boetes en onherstelbare productie-output, is dat begrijpelijk.

        Vermogensintensieve bedrijven missen één groot punt. Dat is de extra voorraad isoleert niet tegen stockouts; het draagt eraan bij. Hoe meer eigen risico u heeft, hoe lager uw algehele serviceniveau, omdat het geld dat nodig is om onderdelen te kopen eindig is, en geld uitgegeven aan overtollige voorraad betekent dat er geen contant geld beschikbaar is voor de onderdelen die het nodig hebben. Zelfs door de overheid gefinancierde MRO-bedrijven, zoals nutsbedrijven en transportbedrijven, erkennen nu meer dan ooit de noodzaak om de uitgaven te optimaliseren. Zoals een materiaalmanager deelde: “We kunnen problemen met zakken met contant geld uit Washington niet langer oplossen.” Ze moeten dus meer doen met minder, en zorgen voor een optimale toewijzing over de tienduizenden onderdelen die ze beheren.

        Dit is waar state-of-the-art voorraadoptimalisatiesoftware van pas komt, die de benodigde voorraad voor gerichte serviceniveaus voorspelt, identificeert wanneer voorraadniveaus negatieve rendementen opleveren en herschikkingen aanbeveelt voor verbeterde algehele serviceniveaus. Smart Software helpt al tientallen jaren activa-intensieve MRO-gebaseerde bedrijven bij het optimaliseren van de bestelniveaus voor elk onderdeel. Bel ons voor meer informatie. 

         

         

        Software voor planning van reserveonderdelen

        De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

        Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

         

         

        Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

         

        Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

         

          Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

          Wat is er anders aan voorraadplanning voor onderhoud, reparatie en bewerkingen (MRO) vergeleken met voorraadplanning in productie- en distributieomgevingen? Kortom, het is de aard van de vraagpatronen in combinatie met het gebrek aan bruikbare bedrijfskennis.

          Vraagpatronen

          Fabrikanten en distributeurs hebben de neiging zich te concentreren op de topverkopers die het grootste deel van hun omzet genereren. Er is doorgaans een grote vraag naar deze artikelen, die relatief eenvoudig te voorspellen zijn met traditionele tijdreeksmodellen die inspelen op voorspelbare trends en/of seizoensinvloeden. Daarentegen hebben MRO-planners bijna altijd te maken met een intermitterende vraag, die schaarser, willekeuriger en moeilijker te voorspellen is. Bovendien zijn de fundamentele hoeveelheden van belang verschillend. MRO-planners geven uiteindelijk het meeste om de ‘wanneer’-vraag: wanneer gaat er iets kapot? Terwijl de anderen zich concentreren op de “hoeveel” vraag van verkochte eenheden.

           

          Zakelijke kennis

          Productie- en distributieplanners kunnen vaak rekenen op het verzamelen van klant- en verkoopfeedback, die kan worden gecombineerd met statistische methoden om de nauwkeurigheid van de prognoses te verbeteren. Aan de andere kant zijn lagers, tandwielen, verbruiksartikelen en repareerbare onderdelen zelden bereid hun mening te delen. Met MRO is bedrijfskennis over welke onderdelen nodig zijn en wanneer niet betrouwbaar (behalve gepland onderhoud wanneer verbruiksartikelen in grotere volumes worden vervangen). Het succes van de MRO-voorraadplanning gaat dus slechts zo ver als het vermogen van hun waarschijnlijkheidsmodellen om toekomstig gebruik te voorspellen. En omdat de vraag zo wisselend is, kunnen ze met traditionele benaderingen niet voorbij Go komen.

           

          Methoden voor MRO

          In de praktijk is het gebruikelijk dat MRO- en activa-intensieve bedrijven hun voorraden beheren door hun toevlucht te nemen tot statische Min/Max-niveaus op basis van subjectieve veelvouden van gemiddeld gebruik, aangevuld met incidentele handmatige aanpassingen op basis van onderbuikgevoelens. Het proces wordt een slechte mix van statisch en reactief, met als resultaat dat er veel tijd en geld wordt verspild aan het versnellen.

          Er zijn alternatieve planningsmethoden die meer op wiskunde en data zijn gebaseerd, hoewel deze stijl van plannen bij MRO minder gebruikelijk is dan in de andere domeinen. Er zijn twee toonaangevende benaderingen voor het modelleren van defecten aan onderdelen en machines: modellen gebaseerd op de betrouwbaarheidstheorie en modellen voor ‘conditiegebaseerd onderhoud’ gebaseerd op realtime monitoring.

           

          Betrouwbaarheidsmodellen

          Betrouwbaarheidsmodellen zijn de eenvoudigste van de twee en vereisen minder gegevens. Ze gaan ervan uit dat alle artikelen van hetzelfde type, bijvoorbeeld een bepaald reserveonderdeel, statistisch gelijkwaardig zijn. Hun belangrijkste onderdeel is een ‘gevarenfunctie’, die het risico op falen in het volgende korte tijdsinterval beschrijft. De gevarenfunctie kan worden vertaald in iets dat beter geschikt is voor besluitvorming: de ‘overlevingsfunctie’, wat de waarschijnlijkheid is dat het item nog steeds werkt na X gebruiksduur (waarbij X kan worden uitgedrukt in dagen, maanden, kilometers, gebruik, enz.). Figuur 1 toont een constante gevaarfunctie en de bijbehorende overlevingsfunctie.

           

          MRO and Spare Parts function and its survival function

          Figuur 1: Constante gevarenfunctie en zijn overlevingsfunctie

           

          Een gevarenfunctie die niet verandert, houdt in dat alleen willekeurige ongelukken een storing veroorzaken. Een gevaarfunctie die in de loop van de tijd toeneemt, impliceert daarentegen dat het artikel versleten is. En een afnemende gevaarfunctie impliceert dat een item zich vestigt. Figuur 2 toont een toenemende gevaarfunctie en de bijbehorende overlevingsfunctie.

           

          MRO and Spare Parts Increasing hazard function and survival function

          Figuur 2: Toenemende gevarenfunctie en zijn overlevingsfunctie

           

          Betrouwbaarheidsmodellen worden vaak gebruikt voor goedkope onderdelen, zoals mechanische bevestigingsmiddelen, waarvan de vervanging misschien niet moeilijk of duur is (maar toch essentieel kan zijn).

           

          Conditiegebaseerd onderhoud

          Modellen gebaseerd op real-time monitoring worden gebruikt ter ondersteuning van condition-based onderhoud (CBM) voor dure zaken als straalmotoren. Deze modellen gebruiken gegevens van sensoren die in de items zelf zijn ingebed. Dergelijke gegevens zijn doorgaans complex en bedrijfseigen, evenals de waarschijnlijkheidsmodellen die door de gegevens worden ondersteund. Het voordeel van real-time monitoring is dat je problemen kunt zien aankomen, dat wil zeggen dat de verslechtering zichtbaar wordt gemaakt en dat voorspellingen kunnen voorspellen wanneer het item de rode lijn zal bereiken en daarom uit het speelveld moet worden gehaald. Dit maakt geïndividualiseerd, proactief onderhoud of vervanging van het artikel mogelijk.

          Figuur 3 illustreert het soort gegevens dat in CBM wordt gebruikt. Elke keer dat het systeem wordt gebruikt, is er een bijdrage aan de cumulatieve slijtage ervan. (Houd er echter rekening mee dat gebruik soms de staat van het apparaat kan verbeteren, bijvoorbeeld wanneer regen een machine koel houdt). U kunt de algemene trend naar boven zien richting een rode lijn, waarna het apparaat onderhoud nodig heeft. U kunt de cumulatieve slijtage extrapoleren om in te schatten wanneer deze de rode lijn zal bereiken en dienovereenkomstig plannen.

           

          MRO and Spare Parts real-time monitoring for condition-based maintenance

          Figuur 3: Ter illustratie van real-time monitoring voor conditiegebaseerd onderhoud

           

          Voor zover ik weet, maakt niemand zulke modellen van klanten met eindproducten om te voorspellen wanneer en hoeveel ze de volgende keer zullen bestellen, misschien omdat de klanten er bezwaar tegen zouden hebben om voortdurend hersenmonitors te dragen. Maar CBM, met zijn complexe monitoring en modellering, wint aan populariteit voor systemen die niet kunnen falen, zoals straalmotoren. Ondertussen hebben klassieke betrouwbaarheidsmodellen nog steeds veel waarde voor het beheer van grote vloten met goedkopere maar nog steeds essentiële artikelen.

           

          Smart's aanpak
          De bovengenoemde op condities gebaseerde onderhouds- en betrouwbaarheidsbenaderingen vereisen een buitensporige last voor het verzamelen en opschonen van gegevens die veel MRO-bedrijven niet aankunnen. Voor die bedrijven biedt Smart een aanpak waarbij geen betrouwbaarheidsmodellen hoeven te worden ontwikkeld. In plaats daarvan exploiteert het gebruiksgegevens op een andere manier. Het maakt gebruik van op waarschijnlijkheid gebaseerde modellen van zowel gebruik als doorlooptijden van leveranciers om duizenden mogelijke scenario's voor doorlooptijden van bevoorrading en vraag te simuleren. Het resultaat is een nauwkeurige verdeling van de vraag en de doorlooptijden voor elk verbruiksonderdeel, die kan worden benut om de optimale voorraadparameters te bepalen. Figuur 4 toont een simulatie die begint met een scenario voor de vraag naar reserveonderdelen (bovenste grafiek) en vervolgens een scenario oplevert van voorhanden aanbod voor bepaalde keuzes van Min/Max-waarden (onderste lijn). Key Performance Indicators (KPI's) kunnen worden geschat door de resultaten van veel van dergelijke simulaties te middelen.

          MRO and Spare Parts simulation of demand and on-hand inventory

          Figuur 4: Een voorbeeld van een simulatie van de vraag naar reserveonderdelen en de voorhanden voorraad

          U kunt hier lezen over de aanpak van Smart bij het voorspellen van reserveonderdelen: https://smartcorp.com/wp-content/uploads/2019/10/Probabilistic-Forecasting-for-Intermittent-Demand.pdf

           

           

          Software voor planning van reserveonderdelen

          De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

          Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

           

           

          Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

           

          Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.