7 digitale transformaties voor nutsbedrijven die de MRO-prestaties zullen verbeteren

Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en afvalwater en telecommunicatie zijn allemaal activa-intensief. Opwekking, productie, verwerking, transmissie en distributie van elektriciteit, aardgas, olie en water zijn allemaal afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer.

Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. Deze inspanningen worden belemmerd door verouderde IT-systemen, evoluerende beveiligingsbedreigingen, frequente verstoringen van de toeleveringsketen en extreme variabiliteit in de vraag. De convergentie van deze uitdagingen met volwassen cloudtechnologie en recente ontwikkelingen op het gebied van data-analyse, probabilistische prognoses en technologieën voor databeheer, bieden nutsbedrijven echter een generatiekans om hun onderneming digitaal te transformeren.

Hier zijn zeven digitale transformaties die relatief kleine investeringen vooraf vereisen, maar een rendement van zeven cijfers zullen opleveren.

1. Voorraadbeheer is de eerste stap in MRO-voorraadoptimalisatie. Het omvat het analyseren van de huidige voorraadniveaus en gebruikspatronen om mogelijkheden voor verbetering te identificeren. Dit moet ook het zoeken naar overstocked, understocked of verouderde items omvatten. Nieuwe probabilistische prognosetechnologie zal helpen door toekomstig gebruik van onderdelen te simuleren en te voorspellen hoe het huidige voorraadbeleid zal presteren. Pats-planners kunnen de simulatieresultaten gebruiken om proactief te identificeren waar beleid moet worden gewijzigd.

2. Nauwkeurige prognoses en vraagplanning zijn erg belangrijk bij het optimaliseren van de voorraden van MRO-serviceonderdelen. Een nauwkeurige vraagprognose is een cruciale drijfveer voor de toeleveringsketen. Door inzicht te krijgen in vraagpatronen die het gevolg zijn van kapitaalprojecten en gepland en ongepland onderhoud, kunnen onderdelenplanners nauwkeuriger anticiperen op toekomstige voorraadbehoeften, een juiste begroting opstellen en de verwachte vraag beter communiceren met leveranciers. Software voor het voorspellen van onderdelen kan worden gebruikt om automatisch een nauwkeurige set van historisch gebruik te huisvesten met details over de vraag naar geplande versus ongeplande onderdelen.

3. Beheer leveranciers en doorlooptijden zijn belangrijke componenten van MRO-voorraadoptimalisatie. Het omvat het selecteren van de beste leveranciers voor de klus, het hebben van back-upleveranciers die snel kunnen leveren als de voorkeursleverancier faalt, en het onderhandelen over gunstige voorwaarden. Het identificeren van de juiste doorlooptijd waarop het voorraadbeleid kan worden gebaseerd, is een ander belangrijk onderdeel. Probabilistische simulaties die beschikbaar zijn in software voor onderdelenplanning kunnen worden gebruikt om de waarschijnlijkheid te voorspellen voor elke mogelijke doorlooptijd die zal worden geconfronteerd. Dit zal resulteren in een nauwkeurigere aanbeveling van wat er op voorraad moet zijn in vergelijking met het gebruik van een offerte van een leverancier of de gemiddelde doorlooptijd.

4. SKU-rationalisatie en beheer van masterdata verwijdert ineffectieve of verouderde SKU's uit de productcatalogus en ERP-database. Het identificeert ook verschillende onderdeelnummers die voor dezelfde SKU zijn gebruikt. Tijdens deze procedure worden de bedrijfskosten en winstgevendheid van elk product beoordeeld, wat resulteert in een gemeenschappelijke lijst met actieve SKU's. Master data management software kan productcatalogi en informatie die is opgeslagen in ongelijksoortige databases beoordelen om SKU-rationalisaties te identificeren en ervoor te zorgen dat voorraadbeleid gebaseerd is op het gemeenschappelijke onderdeelnummer.

5. Voorraadcontrolesystemen zijn de sleutel tot het synchroniseren van voorraadoptimalisatie. Ze bieden nutsbedrijven een kostenefficiënte manier om hun inventaris bij te houden, te bewaken en te beheren. Ze helpen ervoor te zorgen dat het nutsbedrijf over de juiste benodigdheden en materialen beschikt waar en wanneer dat nodig is, terwijl de voorraadkosten worden geminimaliseerd.

6. Continu verbeteren wel essentieel voor het optimaliseren van MRO-voorraden. Het omvat het regelmatig monitoren en aanpassen van voorraadniveaus en voorraadbeleid om het meest efficiënte gebruik van middelen te garanderen. Wanneer de bedrijfsomstandigheden veranderen, moet het nutsbedrijf de verandering detecteren en zijn activiteiten dienovereenkomstig aanpassen. Dit betekent dat planningscycli in een tempo moeten werken dat hoog genoeg is om gelijke tred te houden met veranderende omstandigheden. Door gebruik te maken van probabilistische prognoses om het voorraadbeleid voor serviceonderdelen elke planningscyclus opnieuw te kalibreren, zorgt u ervoor dat het voorraadbeleid (zoals min/max-niveaus) altijd up-to-date is en het nieuwste onderdelengebruik en doorlooptijden van leveranciers weerspiegelt.

7. Planning voor intermitterende vraag met moderne planningssoftware voor reserveonderdelen. Het resultaat is een zeer nauwkeurige schatting van veiligheidsvoorraden, bestelpunten en bestelhoeveelheden, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. De gepatenteerde probabilistische prognosesoftware voor reserveonderdelen van Smart Software simuleert de waarschijnlijkheid voor elke mogelijke vraag en bepaalt nauwkeurig hoeveel er moet worden opgeslagen om de beoogde serviceniveaus van een nutsbedrijf te bereiken. Door gebruik te maken van software om de instroom en uitstroom van repareerbare reserveonderdelen nauwkeurig te simuleren, kunnen downtime, serviceniveaus en voorraadkosten in verband met elke gekozen poolgrootte voor repareerbare reserveonderdelen beter worden voorspeld.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Statistische prognoses: hoe automatische methodeselectie werkt in Smart IP&O

    Smart IP&O biedt geautomatiseerde statistische prognoses die de juiste prognosemethode selecteren die de gegevens het beste voorspelt. Het doet dit voor elke tijdreeks in de dataset. Deze blog zal leken helpen begrijpen hoe de voorspellingsmethoden automatisch worden gekozen.

    Smart stelt vele methoden beschikbaar, waaronder enkele en dubbele exponentiële afvlakking, lineair en eenvoudig voortschrijdend gemiddelde, en Winters-modellen. Elk model is ontworpen om een ander soort patroon vast te leggen. De criteria om automatisch één statistische methode uit een reeks keuzes te kiezen, zijn gebaseerd op welke methode het dichtst bij het correct voorspellen van de achtergehouden geschiedenis kwam.

    Eerdere vraaggeschiedenis wordt aan elke methode doorgegeven en het resultaat wordt vergeleken met de werkelijke waarden om de methode te vinden die er in het algemeen het dichtst bij kwam. Die "winnende" automatisch gekozen methode krijgt dan alle geschiedenis voor dat item om de prognose te produceren.

    De algehele aard van het vraagpatroon voor het item wordt vastgelegd door verschillende delen van de geschiedenis vast te houden, zodat een incidentele uitbijter de keuze van de methode niet onnodig beïnvloedt. U kunt het visualiseren met behulp van het onderstaande diagram, waarin elke rij een 3-periodevoorspelling in de uitgehouden geschiedenis vertegenwoordigt, gebaseerd op verschillende hoeveelheden van de rode eerdere geschiedenis. De varianties van elke pass worden samen gemiddeld om de algemene rangschikking van de methode ten opzichte van alle andere methoden te bepalen.

    App voor automatische prognoses en statistische prognoses

    Voor de meeste tijdreeksen kan dit proces nauwkeurig trends, seizoensinvloeden en gemiddeld volume vastleggen. Maar soms komt een gekozen methode wiskundig het dichtst in de buurt van het voorspellen van de achtergehouden geschiedenis, maar projecteert deze niet op een logische manier.

    Gebruikers kunnen dit corrigeren door de uitzonderingsrapporten en filterfuncties van het systeem te gebruiken om items te identificeren die een beoordeling verdienen. Vervolgens kunnen ze de automatische prognosemethoden configureren waarmee ze voor dat item in aanmerking willen komen.

     

     

    Hoeveel tijd zou het kosten om statistische prognoses te berekenen?
    De belangrijkste factoren die van invloed zijn op de snelheid van uw prognose-engine 

    Hoe lang moet het duren voordat een vraagprognose wordt berekend met behulp van statistische methoden? Deze vraag wordt vaak gesteld door klanten en prospects. Het antwoord hangt er echt van af. Voorspellingsresultaten voor een enkel item kunnen in een oogwenk worden berekend, in slechts enkele honderdsten van een seconde, maar soms kan het zelfs vijf seconden duren. Om de verschillen te begrijpen, is het belangrijk om te begrijpen dat er meer bij komt kijken dan alleen de rekenkundige berekeningen zelf door te spitten. Hier zijn zes factoren die de snelheid van uw prognose-engine beïnvloeden.

    1) Prognosemethode.  Traditionele tijdreeks-extrapolatieve technieken (zoals exponentiële afvlakking en voortschrijdend-gemiddeldemethoden) zijn, mits slim gecodeerd, razendsnel. De automatische prognose-engine Smart Forecast, die gebruikmaakt van deze technieken en onze software voor vraagplanning en voorraadoptimalisatie aandrijft, kan bijvoorbeeld in 1 seconde statistische prognoses voor 1000 artikelen genereren! Extrapolatieve methoden produceren een verwachte voorspelling en een samenvattende maatstaf voor de voorspellingsonzekerheid. Complexere modellen in ons platform die probabilistische vraagscenario's genereren, duren echter veel langer bij dezelfde computerbronnen. Dit komt deels omdat ze een veel groter outputvolume creëren, meestal duizenden plausibele toekomstige vraagreeksen. Meer tijd, ja, maar geen tijdverspilling, aangezien deze resultaten veel vollediger zijn en de basis vormen voor downstream-optimalisatie van voorraadbeheerparameters.

    2) Computerbronnen.  Hoe meer bronnen u naar de berekening gooit, hoe sneller het zal zijn. Middelen kosten echter geld en het is misschien niet economisch om in deze middelen te investeren. Om bijvoorbeeld bepaalde soorten op machine learning gebaseerde prognoses te laten werken, moet het systeem multithread-berekeningen over meerdere servers uitvoeren om snel resultaten te leveren. Zorg er dus voor dat u de veronderstelde rekenresources en bijbehorende kosten begrijpt. Onze berekeningen vinden plaats in de Amazon Web Services-cloud, dus het is mogelijk om desgewenst voor een groot deel van de parallelle berekeningen te betalen.

    3) Aantal tijdreeksen.  Moet u slechts een paar honderd artikelen op één locatie of vele duizenden artikelen op tientallen locaties voorspellen? Hoe groter het aantal combinaties van SKU x Locatie, hoe langer de benodigde tijd. Het is echter mogelijk om de tijd om vraagprognoses te krijgen te verkorten door een betere vraagclassificatie. Het is bijvoorbeeld niet belangrijk om elke combinatie van SKU x Locatie te voorspellen. Moderne software voor vraagplanning kan de gegevens eerst subsetten op basis van volume-/frequentieclassificaties voordat de prognose-engine wordt uitgevoerd. We hebben situaties waargenomen waarin meer dan een miljoen combinaties van SKU x Locatie bestonden, maar waar slechts tien procent vraag naar had in de voorgaande twaalf maanden.

    4) Historisch emmeren. Maakt u prognoses met behulp van dagelijkse, wekelijkse of maandelijkse tijdsintervallen? Hoe gedetailleerder de bucketing, hoe meer tijd het kost om statistische prognoses te berekenen. Veel bedrijven zullen zich afvragen: "Waarom zou iemand dagelijks prognoses willen maken?" State-of-the-art software voor vraagvoorspelling kan echter gebruikmaken van dagelijkse gegevens om gelijktijdige dag-van-week- en week-van-maandpatronen te detecteren die anders zouden worden verdoezeld met traditionele maandelijkse vraagbuckets. En de snelheid van zaken blijft toenemen, wat de concurrentiekracht van het traditionele maandelijkse planningstempo bedreigt.

    5) Hoeveelheid geschiedenis. Beperkt u het model door alleen de meest recente vraaghistorie in te voeren, of voert u alle beschikbare historie in de vraagvoorspellingssoftware? Hoe meer historie u het model voedt, hoe meer gegevens er moeten worden geanalyseerd en hoe langer het gaat duren.

    6) Aanvullende analytische verwerking.  Tot nu toe hebben we ons voorgesteld om de vraaggeschiedenis van items in te voeren en prognoses te krijgen. Maar het proces kan ook aanvullende analytische stappen omvatten die de resultaten kunnen verbeteren. Voorbeelden zijn onder meer:

    a) Uitbijterdetectie en -verwijdering om de vervorming te minimaliseren die wordt veroorzaakt door eenmalige gebeurtenissen zoals stormschade.

    b) Machine learning dat beslist hoeveel geschiedenis moet worden gebruikt voor elk item door verandering van regime te detecteren.

    c) Causale modellering die identificeert hoe veranderingen in vraagbepalende factoren (zoals prijs, rentevoet, klantensentiment, enz.) de toekomstige vraag beïnvloeden.

    d) Melding van uitzonderingen die data-analyse gebruikt om ongebruikelijke situaties te identificeren die nadere beoordeling door het management verdienen.

     

    De rest van het verhaal. Het is ook van cruciaal belang om te begrijpen dat de tijd om een antwoord te krijgen meer inhoudt dan de snelheid van het voorspellen van berekeningen per se. Gegevens moeten in het geheugen worden geladen voordat de berekening kan beginnen. Zodra de prognoses zijn berekend, moet uw browser de resultaten laden zodat ze op het scherm kunnen worden weergegeven zodat u ermee kunt werken. Als u een product opnieuw voorspelt, kunt u ervoor kiezen om de resultaten op te slaan. Als u werkt met producthiërarchieën (het samenvoegen van artikelprognoses tot productfamilies, families tot productlijnen, enz.), zal de nieuwe prognose de hiërarchie beïnvloeden en moet alles op elkaar worden afgestemd. Dit kost allemaal tijd.

    Snel genoeg voor jou? Wanneer u software evalueert om te zien of aan uw behoefte aan snelheid zal worden voldaan, kan dit allemaal worden getest als onderdeel van een proof of concept of proef aangeboden door leveranciers van software voor vraagplanning. Test het uit, en zorg ervoor dat de berekenen, laden en opslaan tijden zijn acceptabel gezien de hoeveelheid gegevens en prognosemethoden die u wilt gebruiken om uw proces te ondersteunen.

     

     

     

    6 dingen die u wel en niet moet doen bij het plannen van reserveonderdelen

    Het beheren van voorraden reserveonderdelen kan onmogelijk aanvoelen. Je weet niet wat er kapot gaat en wanneer. Feedback van mechanische afdelingen en onderhoudsteams is vaak onnauwkeurig. Geplande onderhoudsschema's worden vaak verschoven, waardoor ze allesbehalve 'gepland' zijn. Gebruikspatronen (dwz vraagpatronen) zijn meestal extreem intermitterend, dwz de vraag springt willekeurig tussen nul en iets anders, vaak een verrassend groot aantal. Intermittentie, gecombineerd met het ontbreken van significante trend- of seizoenspatronen, maken traditionele tijdreeksvoorspellingsmethoden onnauwkeurig. Het grote aantal combinaties per locatie maakt het onmogelijk om handmatig prognoses voor afzonderlijke onderdelen te maken of zelfs maar te bekijken. Gezien al deze uitdagingen leek het ons nuttig om een aantal do's (en de bijbehorende don'ts) op een rij te zetten.

    1. Gebruik probabilistische methoden om herbestelpunten en min/max-niveaus te berekenen
      Beslagbeslissingen baseren op gemiddeld dagelijks gebruik is niet het juiste antwoord. Evenmin is vertrouwen op traditionele prognosemethoden zoals exponentiële afvlakkingsmodellen. Geen van beide benaderingen werkt wanneer de vraag intermitterend is, omdat ze niet goed rekening houden met de volatiliteit van de vraag. Probabilistische methoden die duizenden mogelijke vraagscenario's simuleren, werken het best. Ze geven een realistische schatting van de vraagverdeling en kunnen alle nullen en willekeurige niet-nullen aan. Dit zorgt ervoor dat het voorraadniveau de juiste maat heeft om het gewenste serviceniveau te bereiken.
       
    2. Gebruik serviceniveaus in plaats van vuistregels om de voorraadniveaus te bepalen
      Veel onderdelenplanningsorganisaties vertrouwen op veelvouden van de dagelijkse vraag en andere vuistregels om het voorraadbeleid te bepalen. Bestelpunten zijn bijvoorbeeld vaak gebaseerd op het verdubbelen van de gemiddelde vraag over de doorlooptijd of het toepassen van een ander veelvoud, afhankelijk van het belang van het artikel. Gemiddelden houden echter geen rekening met hoe vluchtig (of luidruchtig) een onderdeel is en zullen leiden tot overbevoorrading van minder luidruchtige onderdelen en onderbevoorrading van meer luidruchtige onderdelen.
       
    3. Bereken het voorraadbeleid regelmatig opnieuw
      Alleen omdat de vraag met tussenpozen is, wil nog niet zeggen dat er in de loop van de tijd niets verandert. Maar na interviews met honderden bedrijven die de inventaris van reserveonderdelen beheren, ontdekken we dat minder dan 10% het voorraadbeleid maandelijks herberekent. Velen herberekenen het voorraadbeleid pas als er een 'probleem' is. Op duizenden onderdelen zal het gebruik gegarandeerd stijgen of dalen op ten minste enkele van de onderdelen. Doorlooptijden van leveranciers kunnen ook veranderen. Het gebruik van een verouderd bestelpunt zorgt ervoor dat bestellingen te vroeg of te laat worden geactiveerd, waardoor er veel problemen ontstaan. Elke planningscyclus opnieuw berekenen van beleid zorgt ervoor dat de voorraad de juiste maat heeft. Wees niet reactief en wacht tot er zich een probleem voordoet alvorens te overwegen of de Min of Max moet worden aangepast. Tegen die tijd is het te laat - het is alsof u wacht tot uw remmen het begeven voordat u een reparatie uitvoert. Maak je geen zorgen over de moeite die het kost om min/max-waarden voor grote aantallen SKU's opnieuw te berekenen: moderne software doet dit automatisch. Herinneren: Herijking van uw voorraadbeleid is preventief onderhoud tegen voorraaduitval!
       
    4. Krijg buy-in op gerichte serviceniveaus
      Voorraad is duur en moet de juiste omvang hebben op basis van het vinden van een balans tussen de bereidheid van de organisatie om voorraden aan te leggen en haar bereidheid om budget te reserveren voor reserveonderdelen. Te vaak nemen planners geïsoleerde beslissingen op basis van pijnvermijding of verzoeken van onderhoudstechnici, zonder na te denken over hoe uitgaven aan het ene onderdeel van invloed zijn op het vermogen van de organisatie om aan een ander onderdeel uit te geven. Overtollige voorraad aan de ene kant schaadt de serviceniveaus aan andere onderdelen door het voorraadbudget onevenredig op te slokken. Zorg ervoor dat de doelstellingen op het gebied van serviceniveau en de bijbehorende voorraad worden nageleefd kosten om de serviceniveaus te bereiken worden begrepen en overeengekomen.
       
    5. Voer een apart planningsproces uit voor repareerbare onderdelen
      Sommige onderdelen zijn erg duur om te vervangen, dus het verdient de voorkeur om ze voor reparatie naar reparatiefaciliteiten of terug naar de OEM te sturen. Rekening houden met de willekeur aan de aanbodzijde van wanneer repareerbare onderdelen worden geretourneerd, en weten of u moet wachten op een reparatie of een extra reserve moet kopen, zijn van cruciaal belang om de beschikbaarheid van artikelen te garanderen zonder een te grote voorraad. Dit vereist gespecialiseerde berichtgeving en het gebruik van probabilistische modellen. Behandel repareerbare onderdelen bij het plannen niet als verbruiksonderdelen.
       
    6. Tel wat er wordt gekocht tegen het budget, niet alleen wat er wordt verbruikt
      Veel organisaties zullen de totale aankoop van onderdelen toewijzen aan een afzonderlijk bedrijfsbudget en het budget van het mechanische of onderhoudsteam dekken voor onderdelen die worden gebruikt. In de meeste MRO-organisaties, vooral in het openbaar vervoer en nutsbedrijven, bepalen de reparatieteams wat er wordt gekocht. Als wat wordt gekocht niet meetelt voor hun budget, zullen ze te veel kopen om ervoor te zorgen dat er nooit een kans op voorraad is. Ze hebben letterlijk geen stimulans om het goed te doen, dus er zullen tientallen miljoenen overtollige voorraad worden gekocht. Als wat wordt ingekocht in de begroting wordt weerspiegeld, zal er veel meer aandacht worden besteed aan het inkopen van alleen dat wat echt nodig is. Dat erkennen overtollige voorraad schaadt de service door de organisatie te beroven van geld dat anders zou kunnen worden gebruikt voor onderdelen die niet op voorraad zijn, is een belangrijke stap op weg naar een verantwoorde voorraadinkoop.

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Hebben uw statistische prognoses last van het wiggle-effect?

       Wat is het wiggle-effect? 

      Het is wanneer uw statistische prognose de ups en downs die in uw vraaggeschiedenis zijn waargenomen, onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is.

      Hier is een transcriptie van een recente klant waar dit probleem werd besproken:

      Klant: “De prognose volgt niet de patronen die ik in de historie zie. Waarom niet?" 

      Smart: “Als je goed kijkt, zijn de ups en downs die je ziet geen patronen. Het is echt lawaai.”  

      Klant: "Maar als we de hoogtepunten niet voorspellen, slaan we de voorraad op."

      Smart: “Als de voorspelling zou 'wiebelen', zou die veel minder nauwkeurig zijn. Het systeem voorspelt welk patroon dan ook, in dit geval een zeer lichte opwaartse trend. We bufferen het lawaai met veiligheidsvoorraden. De wiggles worden gebruikt om de veiligheidsvoorraden in te stellen.”

      Klant: “Oké. Logisch nu.” 

      Hebben uw statistische prognoses last van de grafiek met het wiggle-effect

      De wiggle ziet er geruststellend uit, maar in dit geval resulteert het in een onjuiste vraagprognose. De ups en downs vinden niet echt elke maand op hetzelfde tijdstip plaats. Een betere statistische voorspelling wordt weergegeven in lichtgroen.