Smart Software VP Research presenteert op Business Analytics Conference, INFORMS 2022

Dr. Tom Willemain leidt INFORMS-sessieHet inventarisatieslagveld domineren: willekeur bestrijden met willekeur.”

Belmont, Massachusetts, maart 2022 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagprognose, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat Tom Willemain, Vice President for Research, een presentatie zal geven op de INFORMS Business Analytics Conference, van 3-5 april 2022, in Houston, Texas.

Dr. Willemain zal een sessie presenteren over hoe de volgende generatie analytics leiders in de toeleveringsketen in productie, distributie en MRO bewapent met tools om willekeur in vraag en aanbod te bestrijden. Tijdens zijn sessie zal hij de volgende technologieën toelichten:

(1) Filtering van regimewijzigingen om gegevensrelevantie te behouden tegen plotselinge verschuivingen in de bedrijfsomgeving.

(2) Bootstrapping-methoden om grote aantallen realistische vraag- en doorlooptijdscenario's voor brandstofmodellen te genereren.

(3) Discrete simulaties van gebeurtenissen om de invoerscenario's te verwerken en de verbanden tussen managementacties en belangrijke prestatie-indicatoren bloot te leggen.

(4) Stochastische optimalisatie op basis van simulatie-experimenten om elk item af te stemmen voor de beste resultaten.

Zonder de analyses hebben voorraadeigenaren twee keuzes: vasthouden aan een rigide bedrijfsbeleid dat meestal gebaseerd is op verouderde en ongeldige vuistregels of toevlucht nemen tot subjectief, onderbuikgevoel dat misschien niet helpt en niet schaalt.

Als de toonaangevende Business Analytics-conferentie biedt INFORMS de mogelijkheid om te communiceren met 's werelds beste voorspellingsonderzoekers en praktijkmensen. De opkomst is groot genoeg om de beste uit het veld aan te trekken, maar klein genoeg om elkaar één op één te ontmoeten en te bespreken. Daarnaast bevat de conferentie inhoud van toonaangevende analyseprofessionals die topanalysetoepassingen delen en presenteren die levens redden, geld besparen en problemen oplossen.

 

Over Dr. Thomas Willemaine

Dr. Thomas Reed Willemain was een deskundige statistische adviseur bij de National Security Agency (NSA) bij Ft. Meade, MD, en als lid van de Adjunct Research Staff bij een aangesloten denktank, het Institute for Defense Analyses Center for Computing Sciences (IDA/CCS). Hij is emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute, waar hij eerder faculteitsfuncties bekleedde aan de Kennedy School of Government van Harvard en het Massachusetts Institute of Technology. Hij is ook mede-oprichter en Senior Vice President/Research bij Smart Software, Inc. Hij is lid van de Association of Former Intelligence Officers, de Military Operations Research Society, de American Statistical Association en verschillende andere professionele organisaties. Willemain behaalde het BSE diploma (summa cum laude, Phi Beta Kappa) van Princeton University en de MS en Ph.D. graden van het Massachusetts Institute of Technology. Zijn andere boeken zijn onder meer: Statistical Methods for Planners, Emergency Medical Systems Analysis (met RC Larson) en 80 artikelen in peer-reviewed tijdschriften over statistiek, operationeel onderzoek, gezondheidszorg en andere onderwerpen. Voor meer informatie, e-mail: TomW@SmartCorp.com of bezoek www.TomWillemain.com.

 

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disney, Arizona Public Service en Ameren. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en is te vinden op het World Wide Web op www.smartcorp.com.

 

SmartForecasts en Smart IP&O hebben gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn het eigendom van hun respectieve eigenaren.

Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

 

Blijf bij de les

 

Ik heb voor duizenden studenten gestaan. Ze zijn min of meer jong, min of meer technisch, min of meer ervaren – en min of meer geïnteresseerd. Ik heb dit gedaan als lid van de universiteitsfaculteit sinds 1972, eerst aan het Massachusetts Institute of Technology, daarna aan de Harvard University en ten slotte aan de School of Engineering aan het Rensselaer Polytechnic Institute. Tussen Harvard en RPI stopte ik tijdelijk met de academische wereld om mede-oprichter van Smart Software met Charlie Smart en Nelson Hartunian. Sindsdien ben ik ook bezig met het trainen van zakelijke gebruikers om de kracht van geavanceerde analyses voor prognoses en voorraadoptimalisatie te benutten.

Op het moment dat ik dit schrijf, ben ik net terug op mijn kantoor bij RPI, nadat ik eerstejaars studenten Technische Bedrijfskunde kennis heb laten maken met de basisconcepten van voorraadbeheer. Als ze zich aan het programma houden, zullen ze de vereiste cursussen volgen in supply chain, systeemsimulatie, statistische analyse en optimalisatie. Ik vertelde ze verhalen over hoe nuttig ze zullen zijn voor hun bedrijven als ze besluiten om carrière te maken in de wereld van de toeleveringsketen. Als ik meer tijd had gehad, had ik gezegd hoe capabel ze zullen zijn als ze afstuderen in vergelijking met veel van hun collega's in het bedrijfsleven. Deze eerstejaars zijn klaar en bereid om bij de les te blijven, ze nemen alle technieken en theorieën in zich op die we ze kunnen geven, en verbeteren hun praktische vaardigheden in zomerbanen of coop-opdrachten.

Wat ik ze niet heb verteld, is dat velen van hen zullen moeten werken om hun intensiteit te behouden als ze aan het werk zijn. Het is een trieste waarheid dat, om welke reden dan ook, veel voorraadbeoefenaars in een soort stilstand komen te zitten die het vermogen van hun bedrijf belemmert om gebruik te maken van de nieuwste technologieën, zoals cloudgebaseerde geavanceerde vraagvoorspelling en voorraadoptimalisatie. Verzamel genoeg van zulke mensen op één plek en behendigheid en verbeterde efficiëntie verdwijnen uit het raam.

Ik denk dat een van de factoren die mensen afstompt, is dat het implementatieproces vaak pijnlijk stapsgewijs en langdurig aanvoelt. Het begint vaak met een ontnuchterende inventarisatie van relevante gegevens, de juistheid en de actualiteit ervan. Dan gaat het naar een vaak lastige ontdekking dat er echt geen systematisch proces is en de daaropvolgende noodzaak om in de toekomst een goed proces te ontwerpen. Het volgende is de noodzaak om te leren een nieuwe softwaresuite te gebruiken. Die stap omvat het leren van nieuwe woordenschat, een bepaald niveau van probabilistisch denken, het vermogen om nieuwe grafieken en tabellen te interpreteren, om nog maar te zwijgen van een nieuwe software-interface. Dit alles kost tijd en moeite.

 

De nauwkeurigheid van de voorspelling geeft een statistisch verantwoorde

 

We hebben ontdekt dat een paar dingen nieuwe klanten helpen om op koers te blijven. Een daarvan is het hebben van een kampioen onder het management, een executive sponsor, die kan instaan voor het commerciële belang van een succesvolle implementatie en ervoor zorgt dat de gebruikers worden ondersteund met permanente educatie. Een tweede is het identificeren en trainen van een of twee supergebruikers met ongebruikelijke combinaties van technische en communicatieve vaardigheden. Een derde is het opbreken van de training in hapklare brokken en testen op begrip na elk stuk en dit proces herhalen totdat het duidelijk is dat de nieuwe concepten, woordenschat en proces volledig zijn opgenomen. Maar al die manoeuvres zullen op niets uitlopen zonder dat het management all-in is en klaar is om op koers te blijven. Voorraadplanningspraktijken die al vele jaren bestaan, zullen niet volledig worden vervangen gedurende een implementatieproces van drie maanden. Je moet het willen om het te krijgen.

 

 

Laat een reactie achter
gerelateerde berichten
Je moet samenwerken met de algoritmen

Je moet samenwerken met de algoritmen

Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken.

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

Goudlokje Voorraadniveaus

Misschien herinner je je het verhaal van Goudlokje uit je jeugd lang geleden. Soms was de pap te heet, soms te koud, maar een keer was het precies goed. Nu we volwassen zijn, kunnen we dat sprookje vertalen in een professioneel principe voor voorraadplanning: er kan te weinig of te veel voorraad zijn en er is een bepaald Goudlokje-niveau dat "precies goed" is. Deze blog gaat over het vinden van die sweet spot.

Bekijk dit voorbeeld om onze fabel over de toeleveringsketen te illustreren. Stelt u zich eens voor dat u serviceonderdelen verkoopt om de systemen van uw klanten draaiende te houden. U biedt een bepaald serviceonderdeel aan dat u $100 kost om te maken, maar dat wordt verkocht voor een opslag van 20%. Je kunt $20 verdienen met elke eenheid die je verkoopt, maar je mag niet de hele $20 houden vanwege de voorraadkosten die je draagt om het onderdeel te kunnen verkopen. Er zijn onderhoudskosten om het onderdeel in goede staat te houden terwijl het op voorraad is en bestelkosten om eenheden die u verkoopt aan te vullen. Ten slotte verliest u soms inkomsten uit verloren verkopen als gevolg van stockouts.  

Deze bedrijfskosten kunnen rechtstreeks verband houden met de manier waarop u het onderdeel in voorraad beheert. Neem voor ons voorbeeld aan dat u een (Q,R) voorraadbeleid gebruikt, waarbij Q de hoeveelheid voor de aanvullingsorder is en R het bestelpunt is. Neem verder aan dat de reden dat u geen $30 per eenheid maakt, is dat u concurrenten heeft en dat klanten het onderdeel van hen zullen krijgen als ze het niet van u kunnen krijgen.

Zowel uw omzet als uw kosten zijn op complexe manieren afhankelijk van uw keuzes voor Q en R. Deze zullen bepalen hoeveel u bestelt, wanneer en dus hoe vaak u bestelt, hoe vaak uw voorraad op is en dus hoeveel verkopen u verliest, en hoeveel contant geld dat u vastlegt in de inventaris. Het is onmogelijk om deze relaties op basis van giswerk uit te rekenen, maar moderne software kan de relaties zichtbaar maken en de dollarcijfers berekenen die u nodig hebt om uw keuze van waarden voor Q en R te sturen. Het doet dit door gedetailleerde, op feiten gebaseerde, probabilistische simulaties uit te voeren die kosten en prestaties voorspellen door middel van een groot aantal realistische vraagscenario's.  

Met deze resultaten in de hand, kunt u de marge berekenen die is gekoppeld aan (Q,R) waarden met behulp van de eenvoudige formule

Marge = (Vraag - Verloren omzet) x Winst per verkochte eenheid - Bestelkosten - Aanhoudingskosten.

In deze formule zijn gederfde verkopen, bestelkosten en bewaarkosten afhankelijk van bestelpunt R en bestelhoeveelheid Q.

Afbeelding 1 toont het resultaat van simulaties die Q vaststelden op 25 eenheden en R varieerden van 10 tot 30 in stappen van 5. Hoewel de curve bovenaan vrij vlak is, zou u het meeste geld verdienen door een voorraad van ongeveer 25 eenheden aan te houden ( wat overeenkomt met instelling R = 20). Meer voorraad, ondanks een hoger serviceniveau en minder verloren verkopen, zou iets minder geld opleveren (en veel meer geld opleveren), en minder voorraad zou veel minder opleveren.

 

Marges versus bedrijf op voorraadniveau

Figuur 1: Aantonen dat er te weinig of te veel voorraad aanwezig kan zijn

 

Zonder te vertrouwen op de inventarissimulatiesoftware, zouden we niet kunnen ontdekken:

  • a) dat het mogelijk is om te weinig en te veel inventaris te dragen
  • b) wat het beste voorraadniveau is?
  • c) hoe er te komen door de juiste keuzes van bestelpunt R en bestelhoeveelheid Q.

 

Zonder een expliciet begrip van het bovenstaande, zullen bedrijven dagelijkse voorraadbeslissingen nemen op basis van onderbuikgevoel en op middeling gebaseerde vuistregels. De hier beschreven afwegingen worden niet blootgelegd en de resulterende mix van voorraad levert een veel lager rendement op, waardoor honderdduizenden tot miljoenen per jaar aan gederfde winst verloren gaan. Dus wees als Goudlokje. Met de juiste systemen en softwaretools kunt u het ook precies goed krijgen!    

 

 

Laat een reactie achter
gerelateerde berichten
Je moet samenwerken met de algoritmen

Je moet samenwerken met de algoritmen

Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken.

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

Verbeter de prognosenauwkeurigheid door fouten te beheren

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Verbeter de forecasting nauwkeurigheid, elimineer overtollige voorraad en maximaliseer service levels

In deze video vertelt Dr. Thomas Willemain, mede-oprichter en SVP Research, over het verbeteren van de nauwkeurigheid van prognoses door fouten te managen. Deze video is de eerste in onze serie over effectieve methoden om de nauwkeurigheid van prognoses te verbeteren. We beginnen met te kijken naar hoe voorspelfouten pijn veroorzaken en de daaruit voortvloeiende kosten. Vervolgens zullen we de drie meest voorkomende fouten uitleggen die we moeten vermijden en die ons kunnen helpen de omzet te verhogen en overtollige voorraad te voorkomen. Tom besluit met een overzicht van de methoden om de nauwkeurigheid van voorspellingen te verbeteren, het belang van het meten van voorspellingsfouten en de technologische mogelijkheden om deze te verbeteren.

 

Prognosefout kan gevolgen hebben

Overweeg één item uit vele

  • Product X kost $100 om te maken en levert $50 winst op per eenheid.
  • De verkoop van Product X zal de komende 12 maanden 1.000 per maand blijken te zijn.
  • Overweeg één item uit vele

Wat zijn de kosten van een prognosefout?

  • Als de voorspelling 10% hoog is, sluit het jaar dan af met $120.000 overtollige voorraad.
  • 100 extra/maand x 12 maanden x $100/eenheid
  • Als de voorspelling 10% laag is, mis dan $60.000 winst.
  • 100 te weinig/maand x 12 maanden x $50/eenheid

 

Drie fouten om te vermijden

1. Fout negeren.

  • Onprofessioneel, plichtsverzuim.
  • Wensen zal het niet zo maken.
  • Behandel nauwkeurigheidsbeoordeling als datawetenschap, niet als een verwijt.

2. Meer fouten tolereren dan nodig is.

  • Statistische prognosemethoden kunnen de nauwkeurigheid op schaal verbeteren.
  • Het verbeteren van gegevensinvoer kan helpen.
  • Het verzamelen en analyseren van prognosefoutstatistieken kan zwakke plekken identificeren.

3. Tijd en geld verspillen die te ver gaat om fouten te elimineren.

  • Sommige product/marktcombinaties zijn inherent moeilijker te voorspellen. Na een punt, laat ze zijn (maar wees alert op nieuwe gespecialiseerde voorspellingsmethoden).
  • Soms kunnen stappen die bedoeld zijn om fouten te verminderen averechts werken (bijv. aanpassing).
Laat een reactie achter

RECENTE BERICHTEN

Je moet samenwerken met de algoritmen

Je moet samenwerken met de algoritmen

Dit artikel gaat over de echte kracht die voortkomt uit de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. We schrijven vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is het onderwerp hoe je het beste met de software kunt samenwerken.

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Voorraadplanning wordt interessanter

      De slimme voorspeller

       Het nastreven van best practices op het gebied van vraagplanning,

      prognoses en voorraadoptimalisatie

      Taiichi Ohno van Toyota wordt gecrediteerd voor het uitvinden van Just-In-Time (JIT) -productie in de jaren vijftig. JIT zorgt ervoor dat een fabrikant alleen produceert wat nodig is, alleen wanneer nodig en alleen in de benodigde hoeveelheid. Die innovatie heeft sindsdien grote gevolgen gehad, sommige goed, sommige minder.

      Een recent artikel in de New York Times "How the World Ran out of Everything" beschrijft enkele van de "mindere" effecten. JIT heeft bijvoorbeeld de voorraadkosten zeer laag gehouden, waardoor het rendement op activa is verbeterd. Dit wordt op zijn beurt beloond door Wall Street, dus veel bedrijven hebben de afgelopen decennia hun voorraden drastisch verminderd. Gefocust als ze waren op financiën, negeerden veel bedrijven de risico's die inherent zijn aan het verminderen van voorraden tot het punt dat 'mager' begon te grenzen aan 'uitgemergeld'. Gecombineerd met de toegenomen globalisering en nieuwe risico's van leveringsonderbrekingen, zijn de voorraden in overvloed toegenomen.

      Sommige industrieën zijn te ver gegaan, waardoor ze blootstaan aan disruptie. In een competitie om de laagste kosten te krijgen, hebben bedrijven onbedoeld hun risico geconcentreerd, onderbroken door tekorten aan grondstoffen of componenten en soms gedwongen om assemblagelijnen stop te zetten. Wall Street kijkt niet goed naar productiestops.

      We weten allemaal dat willekeurige gebeurtenissen het probleem hebben vergroot. De eerste daarvan was de Covid-pandemie. Aangezien de pandemie de fabrieksactiviteiten heeft belemmerd en wanorde heeft veroorzaakt in de wereldwijde scheepvaart, worden veel economieën over de hele wereld gekweld door tekorten aan een enorm scala aan goederen – van computerchips tot hout tot kleding.

      De schade wordt nog groter als er meer onverwachte dingen fout gaan. De blokkade van het Suezkanaal is een goed voorbeeld, het blokkeren van de belangrijkste handelsroute tussen Europa en Azië. Onlangs hebben cyberaanvallen een nieuwe laag van verstoring toegevoegd.

      De reactie creëert zijn eigen problemen, net zoals de cyberaanval op de koloniale pijpleiding gastekorten veroorzaakte door paniekaankopen. Leveranciers beginnen langzamer dan normaal met het uitvoeren van bestellingen. Fabrikanten en distributeurs keren de koers om en vergroten hun voorraden en diversifiëren hun leveranciers om toekomstige voorraden te voorkomen. Het simpelweg uitbreiden van magazijnen biedt misschien niet de oplossing, en de noodzaak om te bepalen hoeveel voorraad moet worden aangehouden, wordt elke dag urgenter.Manager In Magazijn Met Voorraadbeheersoftware

      Dus hoe kun je een real-world plan voor JIT-inventarisatie uitvoeren te midden van al deze risico's en onzekerheden? De basis van uw reactie zijn uw bedrijfsgegevens. Onzekerheid heeft twee bronnen: vraag en aanbod. Voor beide heb je de feiten nodig.

      Maak aan de aanbodzijde gebruik van de gegevens die u heeft over recente doorlooptijden van leveranciers, die de huidige turbulentie weerspiegelen. Gebruik geen gemiddelde waarden als u kansverdelingen kunt gebruiken die het volledige bereik van onvoorziene gebeurtenissen weergeven. Overweeg deze vergelijking. Leverancier A voert nu op betrouwbare wijze bestellingen uit in precies 10 dagen. Leverancier B is ook gemiddeld 10 dagen maar doet het met een 78%/22% mix van 7 en 21 dagen. Zowel A als B hebben een gemiddelde aanvullingsvertraging van 10 dagen, maar de operationele resultaten die ze opleveren zullen heel verschillend zijn. U kunt dit alleen herkennen als u waarschijnlijkheidsmodellen van voorraadprestaties gebruikt.

      Aan de vraagzijde gelden soortgelijke overwegingen. Ten eerste, erken dat er mogelijk een grote verschuiving heeft plaatsgevonden in de aard van de vraag naar artikelen (statistici noemen dit een "regimeverandering"), dus verwijder uit uw analyse alle gegevens die de "goede oude tijd" vertegenwoordigen. Stop dan weer met denken in termen van gemiddelden. Hoewel de gemiddelde vraag belangrijk is, is deze geen voldoende beschrijving van het probleem waarmee u wordt geconfronteerd. Even belangrijk is de volatiliteit van de vraag. Volatiliteit is de reden dat u in de eerste plaats voorraad aanhoudt. Als de vraag volledig voorspelbaar zou zijn, zou u geen stockouts of overtollige voorraad hebben. Net zoals u de volledige waarschijnlijkheidsverdeling van doorlooptijden voor bevoorrading moet schatten, hebt u de volledige verdeling van vraagwaarden nodig.

      Zodra u het bereik van variabiliteit in zowel vraag als aanbod begrijpt, kunt u met probabilistische prognoses rekening houden met verstoringen en ongebruikelijke gebeurtenissen. Software zet uw gegevens on demand en doorlooptijden om in een groot aantal scenario's die aangeven hoe uw volgende planningsperiode eruit zou kunnen zien. Op basis van die scenario's kan de software bepalen hoe uw doelen het beste kunnen worden bereikt voor statistieken als voorraadkosten en voorraadpercentages. Met behulp van oplossingen zoals Smart Inventory Optimization plant u vol vertrouwen op basis van uw beoogde voorraadrisico met minimale voorraadkosten. U kunt ook overwegen om de oplossing optimale serviceniveaudoelen te laten voorschrijven door de kosten van extra voorraad versus voorraadkosten te beoordelen.

      Bij voorraadplanning kunnen we, net als in de wetenschap, niet ontsnappen aan de realiteit van onzekerheid en de impact van ongewone gebeurtenissen. We moeten dienovereenkomstig plannen: met software voor voorraadoptimalisatie kunt u het serviceniveau met de laagste kosten bepalen. Dit creëert een coherente, bedrijfsbrede inspanning die inzicht in de huidige activiteiten combineert met wiskundig correcte beoordelingen van toekomstige risico's en omstandigheden.

      Voorraadplanning is "interessanter" geworden en vereist een grotere mate van risicobewustzijn en wendbaarheid. De juiste software kan daarbij helpen.

       

      Laat een reactie achter

      gerelateerde berichten

      Het probleem met bochten

      Het probleem met bochten

      Tijdens onze reizen door de industriële scene merken we dat veel bedrijven meer aandacht besteden aan inventarisatiebeurten dan zou moeten. We willen een deel van deze aandacht verleggen naar meer consequente prestatiestatistieken.

      De plaag van scheefheid

      De plaag van scheefheid

      Demand planners hebben te maken met meerdere problemen om hun werk gedaan te krijgen. Een daarvan is de irritatie van intermittency. Het "nu zie je het, nu niet meer" karakter van intermitterende vraag, met zijn zware mix van nulwaarden, dwingt het gebruik van geavanceerde statistische methoden, zoals het gepatenteerde Markov Bootstrap-algoritme van Smart Software. Maar zelfs binnen het duistere rijk van de intermitterende vraag zijn er moeilijkheidsgraden: planners moeten verder omgaan met de potentieel kostbare Scourge of Skewness.

      Vraagprognose in een "Build to Order"-bedrijf

      Vraagprognose in een "Build to Order"-bedrijf

      We komen vaak in contact met potentiële klanten die beweren dat ze geen prognosesysteem kunnen gebruiken omdat ze een "build-to-order" productiebedrijf zijn. Ik vind dit een raadselachtig perspectief, want wat deze organisaties ook bouwen, er zijn grondstoffen of tussenproducten van een lager niveau nodig. Als die invoer op een lager niveau niet beschikbaar is wanneer een bestelling voor het afgewerkte product wordt ontvangen, kan de bestelling niet worden gebouwd. Bijgevolg kan de bestelling worden geannuleerd en de bijbehorende inkomsten verloren gaan.

      recente berichten

      • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
        In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
      • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
        De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
      • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
        Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
      • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
        Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
      • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
        Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

        Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

        • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
          In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
        • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
          De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
        • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
          Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
        • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
          In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]