Blijf bij de les

 

Ik heb voor duizenden studenten gestaan. Ze zijn min of meer jong, min of meer technisch, min of meer ervaren – en min of meer geïnteresseerd. Ik heb dit gedaan als lid van de universiteitsfaculteit sinds 1972, eerst aan het Massachusetts Institute of Technology, daarna aan de Harvard University en ten slotte aan de School of Engineering aan het Rensselaer Polytechnic Institute. Tussen Harvard en RPI stopte ik tijdelijk met de academische wereld om mede-oprichter van Smart Software met Charlie Smart en Nelson Hartunian. Sindsdien ben ik ook bezig met het trainen van zakelijke gebruikers om de kracht van geavanceerde analyses voor prognoses en voorraadoptimalisatie te benutten.

Op het moment dat ik dit schrijf, ben ik net terug op mijn kantoor bij RPI, nadat ik eerstejaars studenten Technische Bedrijfskunde kennis heb laten maken met de basisconcepten van voorraadbeheer. Als ze zich aan het programma houden, zullen ze de vereiste cursussen volgen in supply chain, systeemsimulatie, statistische analyse en optimalisatie. Ik vertelde ze verhalen over hoe nuttig ze zullen zijn voor hun bedrijven als ze besluiten om carrière te maken in de wereld van de toeleveringsketen. Als ik meer tijd had gehad, had ik gezegd hoe capabel ze zullen zijn als ze afstuderen in vergelijking met veel van hun collega's in het bedrijfsleven. Deze eerstejaars zijn klaar en bereid om bij de les te blijven, ze nemen alle technieken en theorieën in zich op die we ze kunnen geven, en verbeteren hun praktische vaardigheden in zomerbanen of coop-opdrachten.

Wat ik ze niet heb verteld, is dat velen van hen zullen moeten werken om hun intensiteit te behouden als ze aan het werk zijn. Het is een trieste waarheid dat, om welke reden dan ook, veel voorraadbeoefenaars in een soort stilstand komen te zitten die het vermogen van hun bedrijf belemmert om gebruik te maken van de nieuwste technologieën, zoals cloudgebaseerde geavanceerde vraagvoorspelling en voorraadoptimalisatie. Verzamel genoeg van zulke mensen op één plek en behendigheid en verbeterde efficiëntie verdwijnen uit het raam.

Ik denk dat een van de factoren die mensen afstompt, is dat het implementatieproces vaak pijnlijk stapsgewijs en langdurig aanvoelt. Het begint vaak met een ontnuchterende inventarisatie van relevante gegevens, de juistheid en de actualiteit ervan. Dan gaat het naar een vaak lastige ontdekking dat er echt geen systematisch proces is en de daaropvolgende noodzaak om in de toekomst een goed proces te ontwerpen. Het volgende is de noodzaak om te leren een nieuwe softwaresuite te gebruiken. Die stap omvat het leren van nieuwe woordenschat, een bepaald niveau van probabilistisch denken, het vermogen om nieuwe grafieken en tabellen te interpreteren, om nog maar te zwijgen van een nieuwe software-interface. Dit alles kost tijd en moeite.

 

De nauwkeurigheid van de voorspelling geeft een statistisch verantwoorde

 

We hebben ontdekt dat een paar dingen nieuwe klanten helpen om op koers te blijven. Een daarvan is het hebben van een kampioen onder het management, een executive sponsor, die kan instaan voor het commerciële belang van een succesvolle implementatie en ervoor zorgt dat de gebruikers worden ondersteund met permanente educatie. Een tweede is het identificeren en trainen van een of twee supergebruikers met ongebruikelijke combinaties van technische en communicatieve vaardigheden. Een derde is het opbreken van de training in hapklare brokken en testen op begrip na elk stuk en dit proces herhalen totdat het duidelijk is dat de nieuwe concepten, woordenschat en proces volledig zijn opgenomen. Maar al die manoeuvres zullen op niets uitlopen zonder dat het management all-in is en klaar is om op koers te blijven. Voorraadplanningspraktijken die al vele jaren bestaan, zullen niet volledig worden vervangen gedurende een implementatieproces van drie maanden. Je moet het willen om het te krijgen.

 

 

Laat een reactie achter
gerelateerde berichten
TOP 3 GEMEENSCHAPPELIJK VOORRAADBELEID

TOP 3 GEMEENSCHAPPELIJK VOORRAADBELEID

In deze video definieert en vergelijkt Dr. Thomas Willemain, medeoprichter en SVP Research, de drie meest gebruikte voorraadbeheerbeleidslijnen. Dit beleid is onderverdeeld in twee groepen, periodieke beoordeling en continue beoordeling. Er is ook een vierde beleid genaamd MRP-logica of op prognoses gebaseerde voorraadplanning, dat het onderwerp is van een aparte videoblog die u hier kunt zien. Deze video's leggen elk beleid uit, hoe ze in de praktijk worden gebruikt en de voor- en nadelen van elke aanpak.

Een back-up maken in veiligheidsvoorraad is het veilige spel

Een back-up maken in veiligheidsvoorraad is het veilige spel

Veiligheidsvoorraad is een essentieel onderdeel van elk systeem van voorraadbeheer. Sommige voorraadsoftware beschouwt veiligheidsvoorraad zelfs als de belangrijkste beslissingsvariabele in de zoektocht naar een evenwicht tussen voorraadkosten en artikelbeschikbaarheid. Helaas is die aanpak niet de beste manier om de balans te vinden.

Beheer van de inventaris van gepromote artikelen

Beheer van de inventaris van gepromote artikelen

In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

Goudlokje Voorraadniveaus

Misschien herinner je je het verhaal van Goudlokje uit je jeugd lang geleden. Soms was de pap te heet, soms te koud, maar een keer was het precies goed. Nu we volwassen zijn, kunnen we dat sprookje vertalen in een professioneel principe voor voorraadplanning: er kan te weinig of te veel voorraad zijn en er is een bepaald Goudlokje-niveau dat "precies goed" is. Deze blog gaat over het vinden van die sweet spot.

Bekijk dit voorbeeld om onze fabel over de toeleveringsketen te illustreren. Stelt u zich eens voor dat u serviceonderdelen verkoopt om de systemen van uw klanten draaiende te houden. U biedt een bepaald serviceonderdeel aan dat u $100 kost om te maken, maar dat wordt verkocht voor een opslag van 20%. Je kunt $20 verdienen met elke eenheid die je verkoopt, maar je mag niet de hele $20 houden vanwege de voorraadkosten die je draagt om het onderdeel te kunnen verkopen. Er zijn onderhoudskosten om het onderdeel in goede staat te houden terwijl het op voorraad is en bestelkosten om eenheden die u verkoopt aan te vullen. Ten slotte verliest u soms inkomsten uit verloren verkopen als gevolg van stockouts.  

Deze bedrijfskosten kunnen rechtstreeks verband houden met de manier waarop u het onderdeel in voorraad beheert. Neem voor ons voorbeeld aan dat u een (Q,R) voorraadbeleid gebruikt, waarbij Q de hoeveelheid voor de aanvullingsorder is en R het bestelpunt is. Neem verder aan dat de reden dat u geen $30 per eenheid maakt, is dat u concurrenten heeft en dat klanten het onderdeel van hen zullen krijgen als ze het niet van u kunnen krijgen.

Zowel uw omzet als uw kosten zijn op complexe manieren afhankelijk van uw keuzes voor Q en R. Deze zullen bepalen hoeveel u bestelt, wanneer en dus hoe vaak u bestelt, hoe vaak uw voorraad op is en dus hoeveel verkopen u verliest, en hoeveel contant geld dat u vastlegt in de inventaris. Het is onmogelijk om deze relaties op basis van giswerk uit te rekenen, maar moderne software kan de relaties zichtbaar maken en de dollarcijfers berekenen die u nodig hebt om uw keuze van waarden voor Q en R te sturen. Het doet dit door gedetailleerde, op feiten gebaseerde, probabilistische simulaties uit te voeren die kosten en prestaties voorspellen door middel van een groot aantal realistische vraagscenario's.  

Met deze resultaten in de hand, kunt u de marge berekenen die is gekoppeld aan (Q,R) waarden met behulp van de eenvoudige formule

Marge = (Vraag - Verloren omzet) x Winst per verkochte eenheid - Bestelkosten - Aanhoudingskosten.

In deze formule zijn gederfde verkopen, bestelkosten en bewaarkosten afhankelijk van bestelpunt R en bestelhoeveelheid Q.

Afbeelding 1 toont het resultaat van simulaties die Q vaststelden op 25 eenheden en R varieerden van 10 tot 30 in stappen van 5. Hoewel de curve bovenaan vrij vlak is, zou u het meeste geld verdienen door een voorraad van ongeveer 25 eenheden aan te houden ( wat overeenkomt met instelling R = 20). Meer voorraad, ondanks een hoger serviceniveau en minder verloren verkopen, zou iets minder geld opleveren (en veel meer geld opleveren), en minder voorraad zou veel minder opleveren.

 

Marges versus bedrijf op voorraadniveau

Figuur 1: Aantonen dat er te weinig of te veel voorraad aanwezig kan zijn

 

Zonder te vertrouwen op de inventarissimulatiesoftware, zouden we niet kunnen ontdekken:

  • a) dat het mogelijk is om te weinig en te veel inventaris te dragen
  • b) wat het beste voorraadniveau is?
  • c) hoe er te komen door de juiste keuzes van bestelpunt R en bestelhoeveelheid Q.

 

Zonder een expliciet begrip van het bovenstaande, zullen bedrijven dagelijkse voorraadbeslissingen nemen op basis van onderbuikgevoel en op middeling gebaseerde vuistregels. De hier beschreven afwegingen worden niet blootgelegd en de resulterende mix van voorraad levert een veel lager rendement op, waardoor honderdduizenden tot miljoenen per jaar aan gederfde winst verloren gaan. Dus wees als Goudlokje. Met de juiste systemen en softwaretools kunt u het ook precies goed krijgen!    

 

 

Laat een reactie achter
gerelateerde berichten
TOP 3 GEMEENSCHAPPELIJK VOORRAADBELEID

TOP 3 GEMEENSCHAPPELIJK VOORRAADBELEID

In deze video definieert en vergelijkt Dr. Thomas Willemain, medeoprichter en SVP Research, de drie meest gebruikte voorraadbeheerbeleidslijnen. Dit beleid is onderverdeeld in twee groepen, periodieke beoordeling en continue beoordeling. Er is ook een vierde beleid genaamd MRP-logica of op prognoses gebaseerde voorraadplanning, dat het onderwerp is van een aparte videoblog die u hier kunt zien. Deze video's leggen elk beleid uit, hoe ze in de praktijk worden gebruikt en de voor- en nadelen van elke aanpak.

Een back-up maken in veiligheidsvoorraad is het veilige spel

Een back-up maken in veiligheidsvoorraad is het veilige spel

Veiligheidsvoorraad is een essentieel onderdeel van elk systeem van voorraadbeheer. Sommige voorraadsoftware beschouwt veiligheidsvoorraad zelfs als de belangrijkste beslissingsvariabele in de zoektocht naar een evenwicht tussen voorraadkosten en artikelbeschikbaarheid. Helaas is die aanpak niet de beste manier om de balans te vinden.

Beheer van de inventaris van gepromote artikelen

Beheer van de inventaris van gepromote artikelen

In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

Een voorbeeld van op simulatie gebaseerde multi-echelon voorraadoptimalisatie

Het beheren van de inventaris in een enkele faciliteit is al moeilijk genoeg, maar het probleem wordt veel complexer wanneer er meerdere faciliteiten zijn die in meerdere echelons zijn gerangschikt. De complexiteit komt voort uit de interacties tussen de echelons, waarbij de eisen op de lagere niveaus opborrelen en eventuele tekorten op de hogere niveaus die naar beneden stromen.

Als elk van de faciliteiten afzonderlijk zou worden beheerd, zouden standaardmethoden kunnen worden gebruikt, zonder rekening te houden met interacties, om parameters voor voorraadbeheer in te stellen, zoals bestelpunten en bestelhoeveelheden. Het negeren van de interacties tussen niveaus kan echter leiden tot catastrofale storingen. Ervaring en vallen en opstaan maken het ontwerpen van stabiele systemen mogelijk, maar die stabiliteit kan worden verstoord door veranderingen in vraagpatronen of doorlooptijden of door toevoeging van nieuwe faciliteiten. Het omgaan met dergelijke veranderingen wordt enorm geholpen door geavanceerde supply chain-analyses, die een veilige "sandbox" bieden waarin voorgestelde systeemwijzigingen kunnen worden getest voordat ze worden geïmplementeerd. Deze blog illustreert dat punt.

 

Het scenario

Om enige hoop te hebben dit probleem op een nuttige manier te bespreken, zal deze blog het probleem vereenvoudigen door de hiërarchie op twee niveaus te beschouwen die is afgebeeld in figuur 1. Stel u voor dat de faciliteiten op het lagere niveau magazijnen (WH's) zijn van waaruit moet worden voldaan aan de eisen van de klant , en dat de inventarisitems bij elke WH serviceonderdelen zijn die aan een breed scala aan externe klanten worden verkocht.

 

Feit en Fantasie in Optimalisatie van multi-echelonvoorraad

Figuur 1: Algemene structuur van één type voorraadsysteem op twee niveaus

Stel je voor dat het hogere niveau zou bestaan uit één distributiecentrum (DC) dat klanten niet rechtstreeks bedient, maar wel de WH's aanvult. Neem voor de eenvoud aan dat het DC zelf wordt aangevuld vanuit een Bron die altijd voldoende voorraad heeft (of maakt) om onderdelen onmiddellijk naar het DC te verzenden, zij het met enige vertraging. (Als alternatief zouden we het systeem kunnen overwegen om winkels door één magazijn te laten bevoorraden).

Elk niveau kan worden beschreven in termen van vraagniveaus (behandeld als willekeurig), doorlooptijden (willekeurig), voorraadbeheerparameters (hier, Min- en Max-waarden) en tekortbeleid (hier, naleveringen toegestaan).

 

De analysemethode

De academische literatuur heeft vooruitgang geboekt met betrekking tot dit probleem, hoewel dit meestal ten koste gaat van vereenvoudigingen die nodig zijn om een zuiver wiskundige oplossing mogelijk te maken. Onze aanpak is hier toegankelijker en flexibeler: Monte Carlo simulatie. Dat wil zeggen, we bouwen een computerprogramma dat de logica van de systeemwerking bevat. Het programma "creëert" willekeurige vraag op WH-niveau, verwerkt de vraag volgens de logica van een gekozen voorraadbeleid en creëert vraag naar het DC door de willekeurige verzoeken om aanvulling van de WH's te bundelen. Met deze benadering kunnen we veel gesimuleerde dagen van systeemwerking observeren terwijl we letten op belangrijke gebeurtenissen zoals stockouts op beide niveaus.

 

Een voorbeeld

Om een analyse te illustreren, hebben we een systeem gesimuleerd dat bestaat uit vier WH's en één DC. De gemiddelde vraag varieerde over de WH's. Aanvulling van het DC naar een WH duurde 4 tot 7 dagen, gemiddeld 5,15 dagen. Het aanvullen van de DC van de Bron duurde 7, 14, 21 of 28 dagen, maar 90% van de tijd was ofwel 21 of 28 dagen, wat neerkomt op een gemiddelde van 21 dagen. Elke faciliteit had Min- en Max-waarden die na enkele ruwe berekeningen werden bepaald door het oordeel van analisten.

Figuur 2 toont de resultaten van een jaar gesimuleerde dagelijkse werking van dit systeem. De eerste rij in de figuur toont de dagelijkse vraag naar het item bij elke WH, waarvan werd aangenomen dat het "puur willekeurig" was, wat betekent dat het een Poisson-verdeling had. De tweede rij toont de voorhanden voorraad aan het einde van elke dag, met Min- en Max-waarden aangegeven door blauwe lijnen. De derde rij beschrijft de operaties op het DC. In tegenstelling tot de veronderstelling van veel theorieën, was de vraag naar het DC niet in de buurt van Poisson, en evenmin was de vraag vanuit het DC naar de Bron. In dit scenario waren de Min- en Max-waarden voldoende om ervoor te zorgen dat de artikelbeschikbaarheid hoog was bij elke WH en bij het DC, en er werden geen stockouts waargenomen bij een van de vijf faciliteiten.

 

Klik hier om de afbeelding te vergroten

Figuur 2 - Gesimuleerd gebruiksjaar van een systeem met vier WH's en één DC.

Figuur 2 – Gesimuleerd gebruiksjaar van een systeem met vier WH's en één DC.

 

Laten we nu het scenario variëren. Wanneer stockouts uiterst zeldzaam zijn, zoals in figuur 2, is er vaak overtollige voorraad in het systeem. Stel dat iemand suggereert dat het voorraadniveau op het DC er een beetje dik uitziet en denkt dat het een goed idee zou zijn om daar geld te besparen. Hun suggestie om de voorraad op het DC te verminderen is om de waarde van de Min op het DC te verlagen van 100 naar 50. Wat gebeurt er? Je zou kunnen raden, of je zou kunnen simuleren.

Figuur 3 toont de simulatie – het resultaat is niet mooi. Het systeem werkt een groot deel van het jaar prima, daarna raakt de voorraad van het DC op en kan het de achterstand niet meer inhalen ondanks het sturen van opeenvolgend grotere aanvullingsorders naar de bron. Drie van de vier WH's komen tegen het einde van het jaar in een doodsspiraal terecht (en WH1 volgt daarna). De simulatie heeft een gevoeligheid aan het licht gebracht die niet kan worden genegeerd en heeft een slechte beslissing gemarkeerd.

 

Klik hier om de afbeelding te vergroten

Figuur 3 - Gesimuleerde effecten van het verlagen van de Min bij de DC.

Figuur 3 – Gesimuleerde effecten van het verlagen van de Min bij de DC.

 

Nu kunnen de voorraadbeheerders terug naar de tekentafel en andere mogelijke manieren testen om de investering in voorraad op DC-niveau te verminderen. Een stap die altijd helpt, als u en uw leverancier dit samen kunnen realiseren, is om een flexibeler systeem te creëren door de doorlooptijd voor aanvullingen te verkorten. Door samen te werken met de bron om ervoor te zorgen dat het DC altijd binnen 7 of 14 dagen wordt aangevuld, wordt het systeem gestabiliseerd, zoals weergegeven in afbeelding 4.

 

Klik hier om de afbeelding te vergroten

Figuur 4 - Gesimuleerde effecten van het verkorten van de doorlooptijd voor het aanvullen van het DC.

Figuur 4 – Gesimuleerde effecten van het verkorten van de doorlooptijd voor het aanvullen van het DC.

 

Helaas is het voornemen om de voorraad op het DC te verminderen niet gehaald. De oorspronkelijke dagelijkse voorraadtelling was ongeveer 80 eenheden en blijft ongeveer 80 eenheden na verlaging van de DC's Min en drastische verbetering van de Source-to-DC doorlooptijd. Maar met het simulatiemodel kan het planningsteam andere ideeën uitproberen tot ze tot een bevredigend herontwerp komen. Of, aangezien figuur 4 laat zien dat de DC-voorraad met nul begint te flirten, zouden ze het misschien verstandig vinden om de behoefte aan gemiddeld ongeveer 80 eenheden in het DC te accepteren en in plaats daarvan te zoeken naar manieren om de voorraadinvesteringen bij de WH's te verminderen.

 

De afhaalrestaurants

  1. Multiechelon voorraadoptimalisatie (MEIO) is complex. Veel factoren werken samen om systeemgedrag te produceren dat zelfs in eenvoudige systemen met twee niveaus verrassend kan zijn.
  2. Monte Carlo-simulatie is een handig hulpmiddel voor planners die nieuwe systemen moeten ontwerpen of bestaande systemen moeten aanpassen.

 

 

 

Laat een reactie achter
gerelateerde berichten
TOP 3 GEMEENSCHAPPELIJK VOORRAADBELEID

TOP 3 GEMEENSCHAPPELIJK VOORRAADBELEID

In deze video definieert en vergelijkt Dr. Thomas Willemain, medeoprichter en SVP Research, de drie meest gebruikte voorraadbeheerbeleidslijnen. Dit beleid is onderverdeeld in twee groepen, periodieke beoordeling en continue beoordeling. Er is ook een vierde beleid genaamd MRP-logica of op prognoses gebaseerde voorraadplanning, dat het onderwerp is van een aparte videoblog die u hier kunt zien. Deze video's leggen elk beleid uit, hoe ze in de praktijk worden gebruikt en de voor- en nadelen van elke aanpak.

Een back-up maken in veiligheidsvoorraad is het veilige spel

Een back-up maken in veiligheidsvoorraad is het veilige spel

Veiligheidsvoorraad is een essentieel onderdeel van elk systeem van voorraadbeheer. Sommige voorraadsoftware beschouwt veiligheidsvoorraad zelfs als de belangrijkste beslissingsvariabele in de zoektocht naar een evenwicht tussen voorraadkosten en artikelbeschikbaarheid. Helaas is die aanpak niet de beste manier om de balans te vinden.

Beheer van de inventaris van gepromote artikelen

Beheer van de inventaris van gepromote artikelen

In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.

Electric Power Utility selecteert Smart Software voor voorraadoptimalisatie

Smart IP&O gaat over 90 dagen live en vermindert de voorraad in de eerste zes maanden met $9 miljoen

Belmont, Massachusetts, 2021Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag de selectie, aankoop en implementatie aangekondigd van zijn vlaggenschipproduct, Smart IP&O, door een groot Amerikaans elektriciteitsbedrijf. Het platform wordt nu gebruikt om meer dan 250.000 reserveonderdelen te plannen met een waarde van meer dan $500.000.000 in het multi-echelon distributienetwerk van het hulpprogramma. Smart IP&O is in slechts 90 dagen geïmplementeerd en is gecrediteerd voor het verminderen van de voorraad met $9 miljoen met behoud van serviceniveaus binnen de eerste zes maanden van gebruik.

De implementatie van Smart IP&O maakt deel uit van het Strategic Supply Chain Optimization (SCO)-initiatief van het nutsbedrijf ter vervanging van twintig jaar oude legacy-software. Volgende fasen van de Smart Software-implementatie zullen Smart IP&O integreren in hun IBM Maximo Asset Management-systeem.

De sleutel tot de selectie en het succes van het project tot nu toe is de bewezen staat van dienst van Smart Software voor het plannen van intermitterende vraag naar reserve- en serviceonderdelen. Intermitterende of klonterige vraag wordt gekenmerkt door frequente perioden van nulvraag, afgewisseld met grote pieken van niet-nulvraag die schijnbaar willekeurig voorkomen. Het nutsbedrijf schat dat meer dan 80% van zijn onderdelen een intermitterende vraag hebben. Smart Software maakt gebruik van probabilistische prognoses die duizenden mogelijke toekomstige uitkomsten van vraag en doorlooptijden creëren. Het bewezen vermogen van de technologie om de vereiste voorraad nauwkeurig te voorspellen om de hoge serviceniveaus te bereiken die het nutsbedrijf nodig heeft, en om dit op grote schaal te doen, waren cruciale onderscheidende factoren.

De implementatie vond plaats binnen 90 dagen na de start van het project. In de daaropvolgende zes maanden maakte Smart IP&O de aanpassing van de voorraadparameters voor enkele duizenden artikelen mogelijk, wat resulteerde in een voorraadvermindering van $9,0 miljoen terwijl de beoogde serviceniveaus werden gehandhaafd. Aanzienlijke extra besparingen - en verbetering van de serviceniveaus voor kritieke reserveonderdelen - worden verwacht in het komende jaar, aangezien voorraden voor extra faciliteiten in het systeem worden gebracht.

"We hebben veel zeer sterke successen geboekt door klanten in activa-intensieve industrieën te helpen hun onderdelenvoorraad te optimaliseren", zegt Greg Hartunian, CEO van Smart Software. “Gecombineerd met de ondersteuning van het hulpprogramma van bovenaf, hands-on betrokkenheid van IT en het enthousiasme van gebruikers om een nieuwe aanpak te omarmen, hadden we een geweldig recept voor succes. We kijken ernaar uit om voort te bouwen op ons vroege succes om samen nog meer waarde te leveren.”

Over Smart Software, Inc.
Smart Software, Inc., opgericht in 1981, is een leider in het leveren van bedrijfsbrede oplossingen voor vraagprognose, planning en voorraadoptimalisatie voor bedrijven. Smart Inventory Planning & Optimization is een multi-tenant webplatform dat vraagplanners de tools geeft om seizoensinvloeden, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en periodiek gevraagde serviceonderdelen en kapitaalgoederen af te handelen. De oplossing biedt voorraadbeheerders nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en is te vinden op: www.smartcorp.com.

 

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); E-mail: info@smartcorp.com

 

Feit en Fantasie in Optimalisatie van multi-echelonvoorraad

Voor de meeste kleine tot middelgrote fabrikanten en distributeurs is voorraadoptimalisatie op één niveau of op één echelon het allernieuwste in de logistieke praktijk. Multi-echelon voorraadoptimalisatie (“MEIO”) houdt in dat het spel op een nog hoger niveau wordt gespeeld en is daarom veel minder gebruikelijk. Deze blog is de eerste van twee. Het is bedoeld om uit te leggen wat MEIO is, waarom standaard MEIO-theorieën kapot gaan en hoe probabilistische modellering door scenariosimulatie de realiteit in het MEIO-proces kan herstellen. De tweede blog laat een specifiek voorbeeld zien.

 

Definitie van voorraadoptimalisatie

Een inventarisatiesysteem is gebaseerd op een reeks ontwerpkeuzes.

De eerste keuze is het beleid om te reageren op stockouts: verlies je gewoon de verkoop aan een concurrent, of kun je de klant overtuigen om een backorder te accepteren? Het eerste komt vaker voor bij distributeurs dan bij fabrikanten, maar dit is misschien niet zo'n goede keuze, omdat klanten het antwoord kunnen dicteren.

De tweede keuze is het voorraadbeleid. Deze zijn onderverdeeld in beleid voor "doorlopende beoordeling" en "periodieke beoordeling", met verschillende opties binnen elk type. U kunt een koppeling maken naar een videozelfstudie waarin verschillende algemene voorraadbeleidsregels worden beschreven hier. Misschien is de meest efficiënte bij beoefenaars bekend als "Min/Max" en bij academici als (s, S) of "kleine S, Grote S." We gebruiken dit beleid in onderstaande scenariosimulaties. Het werkt als volgt: Wanneer de voorhanden voorraad daalt tot of onder de Min (s), wordt een bestelling geplaatst voor aanvulling. De grootte van de bestelling is het gat tussen de voorhanden voorraad en de Max (S), dus als Min 10 is, Max 25 en voorhanden is 8, dan is het tijd voor een bestelling van 25-8 = 17 eenheden.

De derde keuze is om te beslissen over de beste waarden van de 'parameters' van het voorraadbeleid, bijv. de waarden die moeten worden gebruikt voor Min en Max. Voordat u getallen aan Min en Max toewijst, moet u duidelijkheid hebben over wat "beste" voor u betekent. Gewoonlijk betekent beste keuzes die de bedrijfskosten van de voorraad minimaliseren, afhankelijk van een minimum aan artikelbeschikbaarheid, uitgedrukt als Service Level of Fill Rate. In wiskundige termen is dit een "tweedimensionaal beperkt geheeltallig optimalisatieprobleem". "Tweedimensionaal" omdat je twee getallen moet kiezen: Min en Max. "Integer" omdat Min en Max hele getallen moeten zijn. "Beperkt" omdat u minimum- en maximumwaarden moet kiezen die een voldoende hoog niveau van artikelbeschikbaarheid bieden, zoals serviceniveaus en opvulpercentages. “Optimalisatie” omdat je daar wilt komen met de laagste operationele kosten (operationele kosten combineren kosten voor vasthouden, bestellen en tekorten).

 

Multiechelon-inventarisatiesystemen

Het optimalisatieprobleem wordt moeilijker in multi-echelonsystemen. In een systeem met één echelon kan elk voorraadartikel afzonderlijk worden geanalyseerd: één paar Min/Max-waarden per SKU. Omdat er meer onderdelen zijn in een multi-echelonsysteem, is er een groter rekenprobleem.

Afbeelding 1 toont een eenvoudig systeem met twee niveaus voor het beheren van een enkele SKU. Op het lagere niveau komen de vragen binnen bij meerdere magazijnen. Wanneer die dreigen op te raken, worden ze bevoorraad vanuit een distributiecentrum (DC). Wanneer de DC zelf dreigt vol te raken, wordt deze geleverd door een externe bron, zoals de fabrikant van het artikel.

Het ontwerpprobleem hier is multidimensionaal: we hebben Min- en Max-waarden nodig voor 4 magazijnen en voor het DC, dus de optimalisatie vindt plaats in 4×2+1×2=10 dimensies. De analyse moet rekening houden met een groot aantal contextuele factoren:

  • Het gemiddelde niveau en de volatiliteit van de vraag die in elk magazijn binnenkomt.
  • Het gemiddelde en de variabiliteit van de doorlooptijden van aanvullingen vanuit het DC.
  • Het gemiddelde en de variabiliteit van de doorlooptijden voor aanvulling van de bron.
  • Het vereiste minimale serviceniveau in de magazijnen.
  • Het vereiste minimale serviceniveau op het DC.
  • De voorraad-, bestel- en tekortkosten in elk magazijn.
  • De bewaar-, bestel- en tekortkosten bij het DC.

Zoals je zou verwachten, zullen gissingen op de broekspijpen in deze situatie niet goed werken. Evenmin zal proberen het probleem te vereenvoudigen door elk echelon afzonderlijk te analyseren. Voorraden op het DC verhogen bijvoorbeeld het risico op stockouts op magazijnniveau en vice versa.

Dit probleem is duidelijk te ingewikkeld om te proberen op te lossen zonder hulp van een of ander computermodel.

 

Waarom standaard inventarisatietheorie slechte wiskunde is?

Met een beetje zoeken vind je modellen, tijdschriftartikelen en boeken over MEIO. Dit zijn waardevolle bronnen van informatie en inzicht, even getallen. Maar de meeste van hen vertrouwen op het hulpmiddel om het probleem te eenvoudig te maken om het schrijven en oplossen van vergelijkingen mogelijk te maken. Dit is de "Fantasie" waarnaar in de titel wordt verwezen.

Dit doen is een klassieke modelleringsmanoeuvre en is niet per se een slecht idee. Toen ik afstudeerde aan het MIT, leerde ik de waarde van het hebben van twee modellen: een klein, ruw model om als een soort vizier te dienen en een groter, nauwkeuriger model om betrouwbare getallen te produceren. Het kleinere model is gebaseerd op vergelijkingen en op theorie; het grotere model is gebaseerd op procedures en op gegevens, dwz een gedetailleerde systeemsimulatie. Modellen die gebaseerd zijn op eenvoudige theorieën en vergelijkingen kunnen slechte numerieke schattingen opleveren en zelfs hele verschijnselen over het hoofd zien. Daarentegen zullen modellen die gebaseerd zijn op procedures (bijv. "bestel tot de Max wanneer u de Min overschrijdt") en feiten (bijv. de laatste 3 jaar van de dagelijkse vraag naar artikelen) veel meer rekenkracht vergen, maar realistischere antwoorden geven. Gelukkig hebben we dankzij de cloud veel rekenkracht binnen handbereik.

Misschien wel de grootste modellering van "zonde" in de MEIO-literatuur is de veronderstelling dat eisen op alle echelons kunnen worden gemodelleerd als puur willekeurige Poisson-processen. Zelfs als het waar zou zijn op magazijnniveau, zou het verre van waar zijn op DC-niveau. Het Poisson-proces is de "witte rat van vraagmodellering" omdat het eenvoudig is en meer manipulatie van papier-en-potloodvergelijkingen mogelijk maakt. Omdat niet alle eisen Poisson-vormig zijn, resulteert dit in onrealistische aanbevelingen.

 

Op scenario's gebaseerde simulatie-optimalisatie

Om realisme te krijgen, moeten we dieper ingaan op de details van hoe de voorraadsystemen op elk echelon werken. Met weinig beperkingen, behalve die opgelegd door hardware, zoals de grootte van het geheugen, kunnen computerprogramma's elk niveau van complexiteit aan. Het is bijvoorbeeld niet nodig om aan te nemen dat elk van de magazijnen te maken heeft met identieke vraagstromen of dezelfde kosten heeft als alle andere.

Een computersimulatie werkt als volgt.

  1. De werkelijke vraaggeschiedenis en doorlooptijdgeschiedenis worden verzameld voor elke SKU op elke locatie.
  2. Waarden van voorraadparameters (bijv. Min en Max) worden geselecteerd voor proef.
  3. De vraag- en aanvullingsgeschiedenissen worden gebruikt om scenario's te creëren die de invoer naar het computerprogramma weergeven dat de werkingsregels van het systeem codeert.
  4. De ingangen worden gebruikt om de werking van een computermodel van het systeem aan te sturen met de gekozen parameterwaarden over een lange periode, bijvoorbeeld een jaar.
  5. Voor het gesimuleerde jaar worden key performance indicators (KPI's) berekend.
  6. Stappen 2-5 worden vele malen herhaald en de resultaten worden gemiddeld om parameterkeuzes te koppelen aan systeemprestaties.
  7.  

Voorraadoptimalisatie voegt nog een "buitenste lus" toe aan de berekeningen door systematisch te zoeken naar de mogelijke waarden van Min en Max. Van de parameterparen die voldoen aan de artikelbeschikbaarheidsbeperking, identificeert verder zoeken de Min- en Max-waarden die resulteren in de laagste bedrijfskosten.

Feit en Fantasie in Optimalisatie van multi-echelonvoorraad

Figuur 1: Algemene structuur van één type voorraadsysteem op twee niveaus

 

Blijf op de hoogte voor onze volgende blog

BINNENKORT BESCHIKBAAR. Om een voorbeeld van een simulatie van het systeem in figuur 1 te zien, lees de tweede blog over dit onderwerp

 

 

Laat een reactie achter
gerelateerde berichten
TOP 3 GEMEENSCHAPPELIJK VOORRAADBELEID

TOP 3 GEMEENSCHAPPELIJK VOORRAADBELEID

In deze video definieert en vergelijkt Dr. Thomas Willemain, medeoprichter en SVP Research, de drie meest gebruikte voorraadbeheerbeleidslijnen. Dit beleid is onderverdeeld in twee groepen, periodieke beoordeling en continue beoordeling. Er is ook een vierde beleid genaamd MRP-logica of op prognoses gebaseerde voorraadplanning, dat het onderwerp is van een aparte videoblog die u hier kunt zien. Deze video's leggen elk beleid uit, hoe ze in de praktijk worden gebruikt en de voor- en nadelen van elke aanpak.

Een back-up maken in veiligheidsvoorraad is het veilige spel

Een back-up maken in veiligheidsvoorraad is het veilige spel

Veiligheidsvoorraad is een essentieel onderdeel van elk systeem van voorraadbeheer. Sommige voorraadsoftware beschouwt veiligheidsvoorraad zelfs als de belangrijkste beslissingsvariabele in de zoektocht naar een evenwicht tussen voorraadkosten en artikelbeschikbaarheid. Helaas is die aanpak niet de beste manier om de balans te vinden.

Beheer van de inventaris van gepromote artikelen

Beheer van de inventaris van gepromote artikelen

In een eerder bericht besprak ik een van de neteligere problemen waarmee vraagplanners soms worden geconfronteerd: het werken met gegevens over productvraag die worden gekenmerkt door wat statistici scheefheid noemen - een situatie die kostbare voorraadinvesteringen kan vergen. Dit soort problematische gegevens is te vinden in verschillende scenario's. In ten minste één geval, de combinatie van intermitterende vraag en zeer effectieve verkoopacties, leent het probleem zich voor een effectieve oplossing.